
Perl 5 Internals

Simon Cozens

Perl 5 Internals
by Simon Cozens

Copyright © 2001 by NetThink

Open Publications License 1.0

Copyright (c) 2001 by NetThink.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0

or later (the latest version is presently available at http://www.opencontent.org/openpub/).

This series contains material adopted from the Netizen Perl Training Fork (http://spork.sourceforge.net/), by kind

permission of Kirrily Robert.

Table of Contents
1. Preliminaries ..1

1.1. Course Outline..1
1.2. Assumed Knowledge..1
1.3. Objectives..2
1.4. The course notes...2

2. Perl Development Structure..1

2.1. Perl Versioning..1
2.2. The Development Tracks..1
2.3. Perl 5 Porters...2
2.4. Pumpkins and Pumpkings...2
2.5. The Perl Repository..3
2.6. Summary...4
2.7. Exercises...4

3. Parts of the Interpreter..6

3.1. Top Level Overview..6
3.2. The Perl Library..7
3.3. The XS Library...7
3.4. The IO Subsystem...7
3.5. The Regexp Engine...8
3.6. The Parser and Tokeniser..8
3.7. Variable Handling...9
3.8. Run-time Execution..9
3.9. Support Functions...9
3.10. Testing...10
3.11. Other Utilities..10
3.12. Documentation..10
3.13. Summary...11
3.14. Exercises...11

4. Internal Variables ..12

4.1. Basic SVs..12

3

4.1.1. Basics of an SV..12
4.1.1.1.sv_any ..12
4.1.1.2. Reference Counts..13
4.1.1.3. Flags..14

4.1.2. References..15
4.1.3. Integers...16
4.1.4. Strings..18
4.1.5. Floating point numbers..23

4.2. Arrays and Hashes..23
4.2.1. Arrays...24
4.2.2. Hashes..27

4.2.2.1. What is a "hash" anyway?...27
4.2.2.2. Hash Entries..29
4.2.2.3. Hash arrays..30

4.3. More Complex Types..32
4.3.1. Objects...32
4.3.2. Magic...34
4.3.3. Tied Variables..38
4.3.4. Globs and Stashes..40
4.3.5. Code Values...42
4.3.6. Lexical Variables..44

4.4. Inheritance...46
4.5. Summary...46
4.6. Exercises...47

5. The Lexer and the Parser..48

5.1. The Parser...48
5.1.1. BNF and Parsing..48
5.1.2. Parse actions and token values...50
5.1.3. Parsing some Perl...51

5.2. The Tokeniser..53
5.2.1. Basic tokenising...53

5.2.1.1. Tokeniser State..54
5.2.1.2. Looking ahead...54

4

5.2.1.3. Keywords..55
5.2.2. Sublexing...55

5.3. Summary...56
5.4. Exercises...57

6. Fundamental Operations..59

6.1. The basic op..59
6.1.1. The different operations...60
6.1.2. Different "flavours" of op...61
6.1.3. Tying it all together..63

6.1.3.1. "Tree" order...63
6.1.3.2. Execution Order..64

6.2. PP Code...67
6.2.1. The argument stack..67
6.2.2. Stack manipulation...68

6.3. The opcode table andopcodes.pl ..71
6.4. Scatchpads and Targets...72
6.5. The Optimizer...73
6.6. Summary...74
6.7. Exercises...74

7. The Perl Compiler..76

7.1. What is the Perl Compiler?...76
7.2.B:: Modules...77

7.2.1.B::Concise ..77
7.2.2.B::Debug ..79
7.2.3.B::Deparse ..80

7.3. WhatB andOProvide...81
7.3.1.O...81
7.3.2.B ...82

7.4. UsingB for Simple Things..83
7.5. Summary...87
7.6. Exercises...87

A. Unix cheat sheet...89

B. Editor cheat sheet..90

5

B.1. vi...90
B.1.1. Running...90
B.1.2. Using...90
B.1.3. Exiting...91
B.1.4. Gotchas..91
B.1.5. Help...91

B.2. pico...91
B.2.1. Running...92
B.2.2. Using...92
B.2.3. Exiting...92
B.2.4. Gotchas..92
B.2.5. Help...92

B.3. joe...93
B.3.1. Running...93
B.3.2. Using...93
B.3.3. Exiting...93
B.3.4. Gotchas..93
B.3.5. Help...94

B.4. jed...94
B.4.1. Running...94
B.4.2. Using...94
B.4.3. Exiting...94
B.4.4. Gotchas..94
B.4.5. Help...94

C. ASCII Pronunciation Guide ...96

6

List of Tables
A-1. Simple Unix commands...89
B-1. Layout of editor cheat sheets...90
C-1. ASCII Pronunciation Guide...96

1

Chapter 1. Preliminaries
Welcome to NetThink’sPerl 5 Internalstraining course. This is a three-hour course
which provides a hands-on introduction to how theperl interpreter works internally,
how to go about testing and fixing bugs in the interpreter, and what the internals are
likely to look like in the future of Perl, Perl 6.

1.1. Course Outline

• Development Structure

• Parts of the Interpreter

• Internal Variables

• The Lexer and the Parser

• Fundamental operations

• The Runtime Environment

• The Perl Compiler

• Hacking onperl

• Perl 6 Internals

1

Chapter 1. Preliminaries

1.2. Assumed Knowledge
On this course, it is assumed that you will:

• be able to program Perl to at least an "intermediate" level; completing NetThink’s
"Intermediate Perl" course is regarded as an adequate standard.

• have some familiarity with the C programming language.

• be able to use a compiler and, if necessary, symbolic debugger, without prompting.

NOTE: Knowledge of XS is not required, but is beneficial.

1.3. Objectives
The aim of this course is to give you not just an understanding of the workings of the
perl interpreter, but also the means to investigate more about it, to analyze and solve
bugs in the Perl core, and to take part in the Perl development process.

1.4. The course notes
These course notes contain material which will guide you through the topics listed
above, as well as appendices containing other useful information.

The following typographic conventions are used in these notes:

System commands appear inthis typeface

Literal text which you should type in to the command line or editor appears as
monospaced font .

2

Chapter 1. Preliminaries

Keystrokes which you should type appear like this:ENTER. Combinations of keys
appear like this:CTRL -D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

Parts of commands or other literal text which should be replaced by your own specific
values appearslike this

NOTE: Notes and tips appear offset from the text like this.

ADVANCED: Notes which are marked "Advanced" are for those who are
racing ahead or who already have some knowledge of the topic at hand. The
information contained in these notes is not essential to your understanding of
the topic, but may be of interest to those who want to extend their knowledge.

README: Notes marked with "Readme" are pointers to more information
which can be found in your textbook or in online documentation such as
manual pages or websites.

3

Chapter 2. Perl Development Structure
The aim of this section is to familiarize you with the process by which the Perl
interpreter is developed and maintained. Most internals hacking is carried out on the
"bleeding edge" of the Perl sources, and so you need to understand what these are and
how to get them.

It’s also important to understand the structure of the Perl development community; how
it’s organized, and how it works.

2.1. Perl Versioning
Perl has two types of version number: versions before 5.6.0 used a number of the form
x.yyyy_zz ; x was the major version number, (Perl 4, Perl 5)y was the minor release
number, andz was the patchlevel. Major releases represented, for instance, either a
complete rewrite or a major upheaval of the internals; minor releases sometimes added
non-essential functionality, and releases changing the patchlevel were primarily to fix
bugs. Releases wherez was 50 or more were unstable, developers’ releases working
towards the next minor release.

Now, since, 5.6.0, Perl uses the more standard open source version numbering system -
version numbers are of the formx.y.z ; releases wherey is even are stable releases,
and releases where it is odd are part of thedevelopment track.

2.2. The Development Tracks
Perl development has four major aims: extending portability, fixing bugs,
optimizations, and adding language features. Patches to Perl are usually made against
the latest copy of the development release; the very latest copy, stored in the Perl
repository (seeSection 2.5below) is usually called ‘bleadperl’.

1

Chapter 2. Perl Development Structure

The bleadperl eventually becomes the new minor release, but patches are also picked
up by the maintainer of the stable release for inclusion. While there are no hard and fast
rules, and everything is left to the discretion of the maintainer, in general, patches
which are bug fixes or address portability concerns (which include taking advantage of
new features in some platforms, such as large file support or 64 bit integers) are merged
into the stable release as well, whereas new language features tend to be left until the
next minor release. Optimizations may or may not be included, depending on their
impact on the source.

2.3. Perl 5 Porters
In February 2001, there were nearly 200 individuals involved in the development of
Perl; these developers, or ‘porters’, communicate through the use of the
perl5-porters mailing list; if you are planning to get involved in helping to develop
or maintain Perl, a subscription to this list is essential.

You can subscribe by sending an email toperl5-porters-subscribe@perl.org ;
you’ll be asked to send an email to confirm, and then you should start receiving mail
from the list. To send mail, to the list, address the mail to
perl5-porters@perl.org ; you don’t have to be subscribed to post, and the list is
not moderated. If, for whatever reason, you decide to unsubscribe, simply mail
perl5-porters-unsubscribe@perl.org .

The list usually receives between 200 and 400 mails a week. If this is too much for you,
you can subscribe instead to a daily digest service by mailing
perl5-porters-digest-subscribe@perl.org . Alternatively, I write a weekly
summary of the list, published on the Perl home page (http://www.perl.com/).

There is also aperl5-porters FAQ (http://simon-cozens.org/writings/p5p-faq)
which explains a lot of this, plus more about how to behave on P5P and how to submit
patches to Perl.

2

Chapter 2. Perl Development Structure

2.4. Pumpkins and Pumpkings
Development is very loosely organised around the release managers of the stable and
the development tracks; these are the two “pumpkings”.

Perl development can also be divided up into several smaller sub-systems: the regular
expression engine, the configuration process, the documentation, and so on.
Responsibility for each of these areas is known as a “pumpkin”, and hence those who
semi-officially take responsibility for are called “pumpkings”.

At the time of writing, the Pumpking for 5.6.x is Gurusamy Sarathy, and the Pumpking
for 5.7.x is Jarkko Hietaniemi.

You’re probably wondering why the silly names. It stems from the days before Perl was
kept under version control, and people had to manually ‘check out’ a chunk of the Perl
source to avoid conflicts by announcing their intentions to the mailing list; while they
were discussing what this should be called, one of Chip Salzenburg’s co-workers told
him about a system they had used for preventing two people using a tape drive at once:
there was a stuffed pumpkin in the office, and nobody could use the drive unless they
had the pumpkin.

2.5. The Perl Repository
Now Perl is kept in a version control system called Perforce
(http://www.perforce.com/), which is hosted by ActiveState, Inc. There is no public
access to the system itself, but various methods have been devised to allow developers
near-realtime access.

Firstly, there is the Archive of Perl Changes.
(ftp://ftp.linux.activestate.com/pub/staff/gsar/APC/) This FTP site contains both the
current state of all the maintained Perl versions, and also a directory of changes made
to the repository.

Since it’s a little inconvenient to keep up to date using FTP, the directories are also
available via the software synchronisation protocol rsync (http://rsync.samba.org/). If

3

Chapter 2. Perl Development Structure

you haversync installed, you can synchronise your working directory with the
bleeding-edge Perl tree (usually called ‘bleadperl’) in the repository by issuing the
command

% rsync -avz rsync://ftp.linux.activestate.com/perl-current/ .

There are also periodic snapshots of bleadperl released by the development pumpking,
particularly when some important change happens. These are usually available from a
variety of URLs, and always from ftp://ftp.funet.fi/pub/languages/perl/snap/.

Finally, there is a repository browser available at
http://public.activestate.com/cgi-bin/perlbrowse which can tell you the current status of
individual files, as well as provide an annotated ‘blame log’ cross-referencing each line
in a file to the latest patch to affect it.

2.6. Summary

• Perl versions are numbers of the form x.y.z, where y is odd for development and
even for stable versions.

• Perl development takes place on the perl5-porters mailing list
(mailto:perl5-porters@perl.org)

2.7. Exercises

1. Obtain a copy of the development sources to Perl from CPAN. Unpack the archive,
and familiarize yourself with the layout of its contents.

4

Chapter 2. Perl Development Structure

2. Usersync to update the copy tobleadperl . How many bytes changed?

3. Subscribe to perl5-porters, if you haven’t already done so. Spend a few moments
reading through the FAQ. If you have already subscribed, read through back issues
of the summaries.

5

Chapter 3. Parts of the Interpreter
This chapter will take you through the various parts of theperl interpreter, giving you
an overview of its operation and the stages that a Perl program goes through when
executed. By the end of this chapter you should be comfortable with the structure of the
perl source and be able to locate functions and routines in the source tree based on a
brief description of their operation.

3.1. Top Level Overview
perl is not exactly an interpreter and it’s not exactly a compiler: it’s a bytecode
compiler. First compiles the input source code to an internal representation orbytecode,
and then it executes the operations that the bytecode specifies on a virtual machine.

ADVANCED: How does this differ from, say, Java? Java’s virtual machine is
designed to represented an idealised version of a computer’s processor. In
Perl’s case, however, the individual operations that can be performed are
considerably higher-level. For instance, a regular expression match is a
single "instruction" in Perl’s virtual machine.

Again, like a real hardware processor, Java’s VM stores its calculations in
registers; Perl, on the other hand, uses a stack to co-ordinate and
communicate results between operations.

The name we give to the first stage is "parsing", although, as we’ll see, parsing refers to
a specific operation. The input to this stage is your Perl source code; the output is a tree
data structure which represents what that code "means".

One of the nodes in this tree is designated the "start" node; every node will have an
operation to perform, and a pointer to the node that the interpreter must execute next.

Hence, the second phase of the operation is to execute the start node and follow the
chain of pointers around the tree, executing each operation in the correct order. In later

6

Chapter 3. Parts of the Interpreter

parts of this course, we’ll examine exactly how the operations are executed and what
they mean.

First, however, we will examine the various distinct areas of the Perl source tree.

3.2. The Perl Library
The most approachable part of the source code, for Perl programmers, is the Perl
library. This lives inlib/ , and comprises all the standard, pure Perl modules and
pragmata that ship withperl .

There are both Perl 5 modules and unmaintained Perl 4 libraries, shipped for backwards
compatibility. In Perl 5.6.0 and above, the Unicode tables are placed inlib/unicode .

3.3. The XS Library
In ext/ , we find the XS modules which ship with Perl. For instance, the Perl compiler
(seeChapter 7) B can be found here, as can the DBM interfaces. The most important
XS module here isDynaLoader , the dynamic loading interface which allows the
runtime loading of every other XS module.

As a special exception, the XS code to the methods in theUNIVERSALclass can be
found inuniversal.c .

3.4. The IO Subsystem
Recent versions of Perl come with a completely new standard IO implementation,
PerlIO . This allows for several "layers" to be defined through which all IO is filtered,
similar to the line disciplines mechanism insfio . These layers interact with modules
such asPerlIO::Scalar , also in theext/ directory.

7

Chapter 3. Parts of the Interpreter

The IO subsystem is implemented inperlio.c andperlio.h . Declarations for
defining the layers are inperliol.h , and documentation on how to create layers is in
pod/perliol.pod .

Perl may be compiled withoutPerlIO support, in which case there are a number of
abstraction layers to present a unified IO interface to the Perl core.perlsdio.h aliases
ordinary standard IO functions to theirPerlIO names, andperlsfio.h does the
same thing for the alternate IO librarysfio .

The other abstraction layer is the "Perl host" scheme iniperlsys.h . This is
confusing. The idea is to reduce process overhead on Win32 systems by having
multiple Perl interpreters access all system calls through a shared "Perl host"
abstraction object. There is an explanation of it inperl.h , but it is best avoided.

3.5. The Regexp Engine
Another area of the Perl source best avoided is the regular expression engine. This lives
in re*.* . The regular expression matching engine is, roughly speaking, a state machine
generator. Your match pattern is turned into a state machine made up of various match
nodes - you can see these nodes inregcomp.sym . The compilation phase is handled by
regcomp.c , and the state machine’s execution is performed inregexec.c .

ADVANCED: The regular expression compiler and interpreter are actually
switchable; it’s possible to remove Perl’s default regular expression engine
and insert one’s own custom engine. (This is done by changing the value of
the global variables PL_regcompp and PL_regexecp to be function pointers
to the required routines.) In fact, that’s exactly what the re module does.

8

Chapter 3. Parts of the Interpreter

3.6. The Parser and Tokeniser
As mentioned above, the first stage in Perl’s operation is to "understand" your program.
This is done by a joint effort of the tokeniser and the parser. The tokeniser is found in
toke.c , and the parser inperly.c . (although you’re far, far better off looking at the
YACC source inperly.y)

The job of the tokeniser is to split up the input into meaningful chunks, ortokens, and
also to determine what type of thing they represent - a Perl keyword, a variable, a
subroutine name, and so on. The job of the parser is to take these tokens and turn them
into "sentences", understanding their relative meaning in context. We’ll examine their
operation in more detail inChapter 5.

3.7. Variable Handling
Perl’s data types - scalars, arrays, hashes, and so on - are far more flexible than C’s, and
hence have to be implemented quite carefully in terms of C equivalents. The code for
handling arrays is inav.* , hashes are inhv.* and scalars are insv.* . See also
Chapter 4.

3.8. Run-time Execution
What about the code to Perl’s built-ins -print , foreach and the like? These live in
pp.* , and will be examine in much more detail inSection 6.2. Some of the
functionality is shelled out todoio.c .

The actual main loop of the interpreter is inrun.c .

9

Chapter 3. Parts of the Interpreter

3.9. Support Functions
There are a number of routines which help out to make the Perl internals easier to
program. For instance,scope.[ch] contains functions which allow you to save away
and restore values on a stack.locale.c handles locale functions,malloc.c is a
Perl-specific memory allocation library,utf8.c handles all the Unicode manipulation,
numeric.c contains many handy numeric functions andutil.c has various other
useful things.

3.10. Testing
Every aspect of Perl’s operation has a related test, and these test files live in thet/

directory. Tests for individual library and XS modules are slowly being relocated to
lib/ andext/ respectively, but at time of writing, there are over 23,000 separate tests
in over 400 test files.

On a related note, functions for debugging Perl itself are to be found indeb.c and
dump.c . The distinction is that functions indeb.c are typically accessible from the-D
flag on the Perl command line, whereas things indump.c may need to be used from a
source-level debugger.

3.11. Other Utilities
Perl ships with a host of utilities: from thesed, awk andfind to Perl translators in
x2p/ , to the various utilities such ash2xs andperldoc in utils/ .

3.12. Documentation
The POD documentation that ships with Perl lives inpod/ , along with some of the
utilities for manipulating POD documents.

10

Chapter 3. Parts of the Interpreter

3.13. Summary
We’ve examined the layout of the Perl source as well as an overview of the Perl
interpreter. Perl runs programs in two stages: firstly reading in the source and using the
tokeniser and parser to "understand" it, and then running over a series of operations to
execute the program.

3.14. Exercises

1. What and where is the function that implements thetr/// operator? Be as
precise as you can.

2. How does the way Perl executes a program different from the way the Unix shell
executes one? Contrast shell, Perl, Java and C.

3. Without looking, where do you think thePerl_keyword function would be? Find
it, and explain what it does.

4. Several files in the Perl source tree are generated from other files. Look at all the
*.pl files in the root of the Perl source tree, and find out what each file is
responsible for generating, and from what sources. Be extremely careful when
looking atembed.pl .

11

Chapter 4. Internal Variables
Perl’s variables are a lot more flexible than C’s - C is astrongly-typedlanguage,
whereas Perl is weakly typed. This means that Perl’s variables may be used as strings,
as integers, as floating point values, at will.

Hence, when we’re representing values inside Perl, we need to implement some special
types. This chapter will examine how scalars, arrays and hashes are represented inside
the interpreter.

4.1. Basic SVs
SV stands forScalar Value, and it’s the basic form of representing a scalar. There are
several different types of SV, but all of them have certain features in common.

4.1.1. Basics of an SV
Let’s take a look at the definition of the SV type, insv.h in the Perl core:

struct STRUCT_SV {
void* sv_any; /* pointer to something */
U32 sv_refcnt; /* how many references to us */
U32 sv_flags; /* what we are */

};

Every scalar, array and hash that Perl knows about has these three fields: "something",
a reference count, and a set of flags. Let’s examine these separately:

4.1.1.1. sv_any

This field allows us to connect another structure to the SV. This is the mechanism by
which we can change between representing an integer, a string, and so on. The function
inside the Perl core which does the change is calledsv_upgrade .

12

Chapter 4. Internal Variables

As its name implies, this changing is a one-way process; there is no corresponding
sv_downgrade . This is for efficiency: we don’t want to be switching types every time
an SV is used in a different context, first as a number, then a string, then a number
again and so on.

Hence the structures we will meet get progressively more complex, building on each
other: we will see an integer type, a string type, and then a type which can hold both a
string and an integer, and so on.

4.1.1.2. Reference Counts

Perl usesreference countsto determine when values are no longer used. For instance,
consider the following two pieces of code:

{
my $a;
$a = 3;

}

Here, the integer value 3, an SV, is assigned to a variable. Remember that variables are
simply names for values: if we look up$a, we find the value 3. Hence,$a refers tothe
value. At this point, the value has a reference count of 1.

At the closing brace, the variable$a goes out of scope; that is to say, the name is
destroyed, and the reference to the value 3 is broken. The value’s reference count
therefore decreases, becoming zero.

Once an SV has a reference count of zero, it is no longer in use and its memory can be
freed.

Now our second piece of code:

my $b;
{

my $a;
$a = 3;
$b = \$a;

13

Chapter 4. Internal Variables

}

In this case, once we assign a reference to the value into$b, the reference count of our
value (the integer 3) increases to 2, as now two variables are able to reach the value.

When the scope ends, the value’s reference count decreases as before because$a no
longer refers to it. However, even though one name is destroyed, another name,$b, still
refers to the value - hence, the resulting reference count is now 1.

Once the variable$b goes out of scope, or a different value is assigned to it, the
reference count will fall to zero and the SV will be freed.

4.1.1.3. Flags

The final field in the SV structure is a flag field. The most important flags are stored in
the bottom two bits, which are used to hold the SV’s type - that is, the type of structure
which is being attached to thesv_any field.

The second most important flags are those which tell us how much of the information
in the structure is relevant. For instance, we previously mentioned that one of the
structures can hold both an integer and a string. We could also say that it has an integer
"slot" and a string "slot". However, if we alter the value in the integer slot, Perl does not
change the value in the string slot; it simply unsets the flag which says that we may use
the contents of that slot:

$a = 3; # Type: Integer | Flags: Can use in-
teger
... if $a eq "3"; # Type: Integer and String | Flags: Can use integer,

| can use string
$a++; # Type: Integer and String | Flags: Can use integer

14

Chapter 4. Internal Variables

Retrieving and setting flags

You can get at an SV’s flags using theSvFLAGS(sv) macro. This is
lvaluable: that is to say, you can write

SvFLAGS(sv) |= SVf_UTF8;

to turn on theUTF8 flag. However, there are macros insv.h for testing and
setting flags; for instance, the above is more clearly and frequently written

SvUTF8_on(sv);

As mentioned above, the type of the SV is encoded in its flags. Use
SvTYPE(sv) to get at this, and compare the result with the values of the
svtype enum insv.h .

We’ll see more detailed examples of this later on. First, though let’s examine the
various types that can be stored in an SV.

4.1.2. References
A reference, or RV, is simply a C pointer to another SV, as its definition shows:

struct xrv {
SV * xrv_rv; /* pointer to another SV */

}

15

Chapter 4. Internal Variables

ADVANCED: Hence, the Perl statement $a = \$b is equivalent to the C
statements:

sv_upgrade(a, SVt_RV); /* Make sure a is an RV */
a->sv_any->xrv_rv = b;

However, the SV fields are hidden behind macros, so an XS programmer or
porter would write the above as:

sv_upgrade(a, SVt_RV); /* Make sure a is an RV */
SvRV(a) = b;

Functions for manipulating references

You may create a reference at the C level usingnewRV_inc((SV*)

thing) or newRV_noinc((SV*) thing) ; the_noinc form does not
increase the reference count - use with caution!

As seen above,SvRV(rv) dereferences the RV; be sure to cast it into the
appropriate type (SV*, AV*, HV*) before doing anything with it. You can
check the type usingSvTYPE(SvRV(rv)) as expected.

4.1.3. Integers
Perl’s integer type is not necessarily a C int; it’s called an IV, orInteger Value. The
difference is that an IV is guaranteed to hold a pointer.

ADVANCED: Perl uses the macros PTR2INT and INT2PTR to convert
between pointers and IVs. The size guarantee means that, for instance, the
following code will produce an IV:

16

Chapter 4. Internal Variables

$a = \1;
$a--; # Reference (pointer) converted to an integer

Let’s now have a look at an SV structure containing an IV: the SvIV structure. The core
moduleDevel::Peek allows us to examine a value from the C perspective:

% perl -MDevel::Peek -le ’$a=10; Dump($a)’
SV = IV(0x81559b0) at 0x81584f0 ➊

REFCNT = 1 ➋

FLAGS = (IOK,pIOK) ➌

IV = 10 ➍

➊ The first line tells us that this SV is of type SvIV. The SV has a memory location
of 0x814584f0 , andsv_any points to an IV at memory location0x81559b0 .

➋ The value has only one reference to it at the moment, the fact that it is stored in$a.

➌ Devel::Peek converts the flags from a simple integer to a symbolic form: it tells
us that theIOK andpIOK flags are set.IOK means that the value in the IV slot is
OK to be used.

ADVANCED: What about pIOK? pIOK means that the IV slot represents
the underlying ("p" for "private") data. If, for instance, the SV is tied, then
we may not use the "10" that is in the IV slot - we must call the
appropriate FETCHroutine to get the value - so IOK is not set. The "10",
however, is private data, only available to the tying mechanism, so pIOK

is set.

17

Chapter 4. Internal Variables

➍ This shows the IV slot with its value, the "10" which we assigned to$a ’s SV.

ADVANCED: There’s also a sub-type of IVs called UVs which Perl uses
where possible; these are the unsigned counterparts of IVs. The flag IsUV is
used to signal that a value in an IV slot is actually an unsigned value.

Functions for manipulating SvIVs.

You can create a new integer SV with the functionnewSViv(IV foo) .

To get the integer value of an SV, theSvIV(sv) macro will first ensure that
the scalar has a valid IV slot, converting it if necessary, and then return the
value of that slot. To change the integer value of an existing SV, use
sv_setiv(sv, iv) .

TheSvIOK(sv) macro can be used to check whether or not a given SV has
a valid IV slot.

You should note at this point that if you title-case the type of SV (we’ve seen
Sv, and we’ll also seeAv, Hv referring to unique properties of those types)
and then add the names of the fields produced in theDevel::Peek::Dump

dump, (FLAGS, REFCNT, IV) you obtain a macro that can be used from C to
retrieve that property:SvFLAGS, SvREFCNTand so on.

4.1.4. Strings
The next class we’ll look at are strings. We can’t call them "String Values", because the
SV abbreviation is already taken; instead, remembering that a string is a pointer to an
array of characters, and that the entry in the string slot is going to be that pointer, we
call strings "PVs":Pointer Values

18

Chapter 4. Internal Variables

It’s here that we start to see combination types: as well as the SvPV type, we have a
SvPVIV which has string and integer slots.

Before we get into that, though, let us examine the SvPV structure, again fromsv.h :

struct xpv {
char * xpv_pv; /* pointer to malloced string */
STRLEN xpv_cur; /* length of xpv_pv as a C string */
STRLEN xpv_len; /* allocated size */

};

C’s strings have a fixed size, but Perl must dynamically resize its strings whenever the
data going into the string exceeds the currently allocated size. Hence, Perl holds both
the length of the current contents and the maximum length available before a resize
must occur. As with SVs, allocated memory for a string only increases, as the following
example shows:

% perl -MDevel::Peek -le ’$a="abc"; Dump($a);print;
$a="abcde"; Dump($a);print; $a="a"; Dump($a)’
SV = PV(0x814ee44) at 0x8158520 ➊

REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x815c548 "abc"\0 ➋

CUR = 3 ➌

LEN = 4 ➍

SV = PV(0x814ee44) at 0x8158520 ➎

REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x815c548 "abcde"\0
CUR = 5
LEN = 6

SV = PV(0x814ee44) at 0x8158520 ➏

REFCNT = 1

19

Chapter 4. Internal Variables

FLAGS = (POK,pPOK)
PV = 0x815c548 "a"\0
CUR = 1
LEN = 6

➊ This time, we have a SV whosesv_any points to an SvPV structure at address
0x814ee44

➋ The actual pointer, the string, lives at address0x815c548 , and contains the text
"abc" . As this is an ordinary C string, it’s terminated with a null character.

➌ x SvCURis the length of the string, as would be returned bystrlen . In this case, it
is 3 - the null terminator is not counted.

➍ However, it is counted for the purposes of allocation: we have allocated 4 bytes to
store the string, as reflected bySvLEN.

➎ So what happens if we lengthen the string? As the new length is more than the
available space, we need to extend the string.

ADVANCED: The macro SvGROWis responsible for extending strings to a
specified length. It’s defined in terms of the function sv_grow which takes
care of memory reallocation:
#define SvGROW(sv,len) (SvLEN(sv) < (len) ? sv_grow(sv,len) :

SvPVX(sv))

After growing the string to accomodate the new value, the value is assigned and
theCURandLEN information updated. As you can see, the SV and the SvPV
structures stay at the same address, and, in this case, the string pointer itself has
remained at the same address.

➏ And what if we shrink the string? Perl does not give up any memory: you can see
thatLEN is the same as it was before. Perl does this for efficiency: if it reallocated
storage every time a string changed length, it would spent most of its time in
memory management!

20

Chapter 4. Internal Variables

Now let’s see what happens if we use a value as number and string, taking the example
in Section 4.1.1.3:

% perl -Ilib -MDevel::Peek -le ’$a=3; Dump($a);print;
$a eq "3"; Dump($a);print; $a++; Dump($a)’
SV = IV(0x81559d8) at 0x8158518

REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 3

SV = PVIV(0x814f278) at 0x8158518 ➊

REFCNT = 1
FLAGS = (IOK,POK,pIOK,pPOK)
IV = 3
PV = 0x8160350 "3"\0
CUR = 1
LEN = 2

SV = PVIV(0x814f278) at 0x8158518 ➋

REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 4
PV = 0x8160350 "3"\0
CUR = 1
LEN = 2

➊ In order to perform the string comparison, Perl needs to get a string value. It calls
SvPV, the ordinary macro for getting the string value from an SV. PV notices that
we don’t have a valid PV slot, so upgrades the SV to a SvPVIV. It also converts the
number "3" to a string representation, and setsCURandLENappropriately. Because
the values in both the IV and PV slots are available for use, both IOK and POK
flags are turned on.

21

Chapter 4. Internal Variables

➋ When we change the integer value of the SV by incrementing it by one, Perl
updates the value in the IV slot. Since the value in the PV slot is invalidated, the
POK flag is turned off. Perl does not remove the value from the PV slot, nor does it
downgrade to an SvIV because we may use the SV as a string again at a later time.

ADVANCED: There’s one slight twist here: if you ask Perl to remove some
characters from the beginning of the string, it performs a (rather ugly)
optimization called "The Offset Hack". It stores the number of characters to
remove (the offset) in the IV slot, and turns on the OOK(offset OK) flag. The
pointer of the PV is advanced by the offset, and the CURand LEN fields are
decreased by that many. As far as C is concerned the string starts at the
new position; it’s only when the memory is being released that the real start
of the string is important.

Functions for manipulating strings

To create a SvPV from an ordinary string, use eithernewSVpvn(char*,

STRLEN) or newSVpvf(char* format, ...) for sprintf -like
formatting.sv_setpvn(sv, char*, STRLEN) andsv_setpvf(sv,

char* format, ...) can be used to alter the string value of an SV.
Analogous functionssv_catpvn etc. add to the end of the string.

As mentioned above, SvPV(sv) will return the string value, converting the
SV to something which has a valid PV if necessary.

4.1.5. Floating point numbers
Finally, we have floating point types, or NVs:Numeric Values. Like IVs, NVs are
guaranteed to be able to hold a pointer. The SvNV structure is very like the
corresponding SvIV:

% perl -MDevel::Peek -le ’$a=0.5; Dump($a);’
SV = NV(0x815d058) at 0x81584e8

22

Chapter 4. Internal Variables

REFCNT = 1
FLAGS = (NOK,pNOK)
NV = 0.5

However, the combined structure, SvPVNV has slots for floats, integers and strings:

% perl -MDevel::Peek -le ’$a="1"; $a+=0.5; Dump($a);’
SV = PVNV(0x814f9c0) at 0x81584f0

REFCNT = 1
FLAGS = (NOK,pNOK)
IV = 0
NV = 1.5
PV = 0x815b5c0 "1"\0
CUR = 1
LEN = 2

Functions for manipulating NVs

By now, you should be able to guess the functions needed for manipulating
NVs: SvNV(sv) will return the NV, converting if necessary;
sv_newSVnv(float) will create a new SvNV;sv_setnv(sv, float)

will change the NV.

4.2. Arrays and Hashes
Now we’ve looked at the most common types of scalar, (there are a few complications,
which we’ll cover inSection 4.3) let’s examine array and hash structures. These, too,
are build on top of the basic SV structure, with reference counts and flags, and
structures hung offsv_any .

23

Chapter 4. Internal Variables

4.2.1. Arrays
Arrays are known in the core as AVs. Their structure can be found inav.h :

struct xpvav {
char* xav_array; /* pointer to first array element */
SSize_t xav_fill; /* Index of last element present */
SSize_t xav_max; /* max index for which array has space */
IV xof_off; /* ptr is incremented by offset */
NV xnv_nv; /* numeric value, if any */
MAGIC* xmg_magic; /* magic for scalar array */
HV* xmg_stash; /* class package */
SV** xav_alloc; /* pointer to malloced string */
SV* xav_arylen;
U8 xav_flags;

};

We’re going to skip overxmg_magic andxmg_stash for now, and come back to them
in Section 4.3.

Let’s useDevel::Peek as before to examine the AV, but we must remember that we
can only give one argument toDevel::Peek::Dump ; hence, we must pass it a
reference to the AV:

% perl -MDevel::Peek -e ’@a=(1,2,3); Dump(\@a)’ ➊

SV = RV(0x8106ce8) at 0x80fb380 ➊

REFCNT = 1
FLAGS = (TEMP,ROK)
RV = 0x8105824
SV = PVAV(0x8106cb4) at 0x8105824 ➋

REFCNT = 2
FLAGS = ()
IV = 0
NV = 0
ARRAY = 0x80f7de8 ➌

FILL = 2 ➍

24

Chapter 4. Internal Variables

MAX = 3 ➎

ARYLEN = 0x0 ➏

FLAGS = (REAL) ➐

Elt No. 0
SV = IV(0x80fc1f4) at 0x80f1460 ➑

REFCNT = 1
FLAGS = (IOK,pIOK,IsUV)
UV = 1

Elt No. 1
SV = IV(0x80fc1f8) at 0x80f1574

REFCNT = 1
FLAGS = (IOK,pIOK,IsUV)
UV = 2

Elt No. 2
SV = IV(0x80fc1fc) at 0x80f1370

REFCNT = 1
FLAGS = (IOK,pIOK,IsUV)
UV = 3

➊ We’re dumping the reference to the array, which is, as you would expect, an RV.

➋ The RV contains a pointer to another SV: this is our array; theDumpfunction
helpfully calls itself recursively on the pointer.

➌ The AV contains a pointer to a C array of SVs. Just like a string, this array must be
able to change its size; in fact, the expansion and contaction of AVs is just the same
as that of strings.

➍ To facilitate this,FILL is the highest index in the array. This is usually equivalent
to $#array .

➎ MAXis the maximum allocated size of the array; ifFILL has to become more than
MAX, the array is grown withav_extend .

➏ We said thatFILL was usually equivalent to$#array , but the exact equivalent is
ARYLEN. This is an SV that is created on demand - that is, whenever$#array is
read. Since we haven’t read$#array in our example, it’s currently a null pointer.
The distinction betweenFILL and$#array is important when an array is tied.

25

Chapter 4. Internal Variables

➐ TheREALflag is set on "real" arrays; these are arrays which reference count their
contents. Arrays such as@_and the scratchpad arrays (see below) are fake, and do
not bother reference counting their contents as an efficiency hack.

➑ Devel::Peek::Dump shows us some of the elements of the array; these are
ordinary SVs.

ADVANCED: Something similar to the offset hack is performed on AVs to
enable efficient shifting and splicing off the beginning of the array; while
AvARRAY(xav_array in the structure) points to the first element in the array
that is visible from Perl, AvALLOC(xav_alloc) points to the real start of the C
array. These are usually the same, but a shift operation can be carried out by
increasing AvARRAYby one and decreasing AvFILL and AvLEN. Again, the
location of the real start of the C array only comes into play when freeing the
array. See av_shift in av.c .

Functions for manipulating arrays

You can create a new array simply with thenewAVmacro.AvARRAY(av)

will return the underlying C array of SVs;av_len returns the index of the
highest element, andav_fill(av, index) can be used to ensure that an
array is grown to at least the size ofindex .

For more array manipulation functions, seeperlapi in the Perl
documentation, orUsing Perl and Cby Tim Jenness and Simon Cozens.

4.2.2. Hashes
Hashes are represented in the core as, you guessed it, HVs. Before we look at how this
is implemented, we’ll first see what a hash actually is...

26

Chapter 4. Internal Variables

4.2.2.1. What is a "hash" anyway?

A hash is actually quite a clever data structure: it’s a combination of an array and a
linked list. Here’s how it works:

1. The hash key undergoes a transformation to turn it into a number called,
confusingly, thehash value. For Perl, the C code that does the transformation looks
like this: (fromhv.h)

register const char *s_PeRlHaSh = str;
register I32 i_PeRlHaSh = len;
register U32 hash_PeRlHaSh = 0;
while (i_PeRlHaSh--) {

hash_PeRlHaSh += *s_PeRlHaSh++;
hash_PeRlHaSh += (hash_PeRlHaSh << 10);
hash_PeRlHaSh ^= (hash_PeRlHaSh >> 6);

}
hash_PeRlHaSh += (hash_PeRlHaSh << 3);
hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11);
(hash) = (hash_PeRlHaSh += (hash_PeRlHaSh << 15));

Converting that to Perl and tidying it up:

sub hash {
my $string = shift;
my $hash;
for (map {ord $_} split //, $string) {

$hash += $_; $hash += $hash << 10; $hash ^= $hash >> 6;
}
$hash += $hash << 3; $hash ^= $hash >> 1;
return ($hash + $hash << 15);

}

2. This hash is distributed across an array using the modulo operator. For instance, if
our array has 8 elements, ("Hash buckets") we’ll use$hash_array[$hash %
8]

27

Chapter 4. Internal Variables

3. Each bucket contains a linked list; adding a new entry to the hash appends an
element to the linked list. So, for instance,$hash{"red"}="rouge" is
implemented similar to

push @{$hash->[hash("red") % 8]},
{ key => "red",

value => "rouge",
hash => hash("red")

};

ADVANCED: Why do we store the key as well as the hash value in the
linked list? The hashing function may not be perfect - that is to say, it
may generate the same value for "red" as it would for, say, "blue" .
This is called a hash collision, and, while it is rare in practice, it explains
why we can’t depend on the hash value alone.

As usual, a picture speaks a thousand words:

4.2.2.2. Hash Entries

Hashes come in two parts: the HV is the actual array containing the linked lists, and is
very similar to an AV; the things that make up the linked lists arehash entrystructures,
or HEs. Fromhv.h :

/* entry in hash value chain */
struct he {

HE *hent_next; /* next entry in chain */
HEK *hent_hek; /* hash key */
SV *hent_val; /* scalar value that was hashed */

};

/* hash key -- defined separately for use as shared pointer */
struct hek {

28

Chapter 4. Internal Variables

U32 hek_hash; /* hash of key */
I32 hek_len; /* length of hash key */
char hek_key[1]; /* variable-length hash key */

};

As you can see from the above, we simplified slightly when we put the hash key in the
buckets above: the key and the hash value are stored in a separate structure, a HEK.

The HEK stored inside a hash entry represents the key: it contains the hash value and
the key itself. It’s stored separately so that Perl can share identical keys between
different hashes - this saves memory and also saves time calcu.llating the hash value.
You can use the macrosHeHASH(he) andHeKEY(he) to retrieve the hash value and
the key from a HE.

4.2.2.3. Hash arrays

Now to turn to the HVs themselves, the arrays which hold the linked lists of HEs. As
we mentioned, these are not too dissimilar from AVs.

% perl -MDevel::Peek -e ’%a = (red => "rouge", blue => "bleu"); Dump(\%a);’
SV = RV(0x8106c80) at 0x80f1370 ➊

REFCNT = 1
FLAGS = (TEMP,ROK)
RV = 0x81057a0
SV = PVHV(0x8108328) at 0x81057a0

REFCNT = 2
FLAGS = (SHAREKEYS) ➋

IV = 2
NV = 0
ARRAY = 0x80f7748 (0:6, 1:2) ➌

hash quality = 150.0% ➍

KEYS = 2 ➎

FILL = 2
MAX = 7 ➌

RITER = -1 ➏

29

Chapter 4. Internal Variables

EITER = 0x0 ➏

Elt "blue" HASH = 0x8a5573ea ➐

SV = PV(0x80f17b0) at 0x80f1574
REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x80f5288 "bleu"\0
CUR = 4
LEN = 5

Elt "red" HASH = 0x201ed
SV = PV(0x80f172c) at 0x80f1460

REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x80ff370 "rouge"\0
CUR = 5
LEN = 6

➊ As before, we dump a reference to the AV, sinceDumponly takes one parameter.

➋ TheSHAREKEYSflag means that the key structures, the HEKs can be shared
between hashes to save memory. For instance, if we have$french{red} =
"rouge"; $german{red} = "rot" , the key structure is only created once,
and both hashes contain a pointer to it.

➌ As we mentioned before, there are eight buckets in our hash initially - the hash gets
restructured as needed. The numbers in brackets aroundARRAYtell us about the
population of those buckets: six of them have no entries, and two of them have one
entry each.

➍ The "quality" of a hash is related to how long it takes to find an element, and this is
in turn related to the average length of the hash chains, the linked lists attached to
the buckets: if there is only one element in each bucket, you can find the key simply
by performing the hash function. If, on the other hand, all the elements are in the
same hash bucket, the hash is particularly inefficient.

➎ HvKEYS(hv) returns the number of keys in the hash - in this case, two.

➏ These two values refer to the hash iterator: when you use, for instance,keys or
each to iterate over a hash, Perl uses these values to keep track of the current entry.

30

Chapter 4. Internal Variables

The "root iterator",RITER, is the array index of the bucket currently being iterated,
and the "entry interator",EITER, is the current entry in the hash chain.EITER

walks along the hash chain, and when it gets to the end, it incrementsRITER and
looks at the first entry in the next bucket. As we’re currently not in the middle of a
hash iteration, these are set to "safe" values.

➐ As with an array, theDumpfunction shows us some of the elements; it also shows
us the hash key: the key for"blue" is 0x3954c8 . (You can confirm that this is
correct by runninghash("blue") using the Perl subroutine given above.)

4.3. More Complex Types
Sometimes the information provided in an ordinary SV, HV or AV isn’t enough for
what Perl needs to do. For instance, how does one represent objects? What about tied
variables? In this section, we’ll look at some of the complications of the basic SV types.

ADVANCED: The entirety of this section should be considered advanced
material; it will not be covered in the course. Readers following the course
should skip to the next section, Section 4.4 and study this in their own time.

4.3.1. Objects
Objects are represented relatively simply. As we know from ordinary Perl
programming, an object is a reference to some data which happens to know which
package it’s in. In the definitions of AVs and HVs above, we saw the line

HV* xmg_stash; /* class package */

31

Chapter 4. Internal Variables

As we’ll see inSection 4.3.4, packages are known as "stashes" internally and are
represented by hashes. Thexmg_stash field in AVs and HVs is used to store a pointer
to the stash which "owns" the value.

Hence, in the case of an object which is an array reference, the dump looks like this:

% perl -MDevel::Peek -e ’$a=bless [1,2]; Dump($a)’ ➊

SV = RV(0x81586d4) at 0x815b7a0
REFCNT = 1
FLAGS = (ROK)
RV = 0x8151b0c
SV = PVAV(0x8153074) at 0x8151b0c

REFCNT = 1
FLAGS = (OBJECT) ➋

IV = 0
NV = 0
STASH = 0x8151a34 "main" ➌

ARRAY = 0x815fcf8
FILL = 1
MAX = 1
ARYLEN = 0x0
FLAGS = (REAL)
Elt No. 0
SV = IV(0x815833c) at 0x8151bc0

REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 1

Elt No. 1
SV = IV(0x8158340) at 0x8151c44

REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 2

➊ We create an array reference and bless it into the main package.

➋ TheOBJECTflag is turned on to signify that this SV is an object.

32

Chapter 4. Internal Variables

➌ And now we have a pointer to the appropriate stash in theSTASHfield.

4.3.2. Magic
This works for AVs and HVs which have aSTASHfield, but what about ordinary
scalars? There is an additional, more complex type of scalar, which can hold both stash
information and also permits us to hang additional, miscellaneous information onto the
SV. This miscellaneous information is called "magic", (partially because it allows for
clever things to happen, and partially because nobodyreally knows how it works) and
the complex SV structure is a PVMG. We can create a PVMG by blessing a scalar
reference:

% perl -MDevel::Peek -le ’$b="hi";$a=bless \$b, main; print Dump($a)’
SV = RV(0x8106ca4) at 0x810586c

REFCNT = 1
FLAGS = (ROK)
RV = 0x81058c0
SV = PVMG(0x810e628) at 0x81058c0

REFCNT = 2
FLAGS = (OBJECT,POK,pPOK)
IV = 0
NV = 0
PV = 0x80ff698 "hi"\0
CUR = 2
LEN = 3
STASH = 0x80f1388 "main"

As you can see, this is similar to the PVNV structure we saw inSection 4.1.5, with the
addition of theSTASHfield. There’s also another field, which we can see if we look at
the definition ofxpvmg:

struct xpvmg {
char * xpv_pv; /* pointer to malloced string */

33

Chapter 4. Internal Variables

STRLEN xpv_cur; /* length of xpv_pv as a C string */
STRLEN xpv_len; /* allocated size */
IV xiv_iv; /* integer value or pv offset */
NV xnv_nv; /* numeric value, if any */
MAGIC* xmg_magic; /* linked list of magicalness */
HV* xmg_stash; /* class package */

};

Thexmg_magic field provides us with somewhere to put a magic structure. What’s a
magic structure, then? For this, we need to look inmg.h :

struct magic {
MAGIC* mg_moremagic; ➊

MGVTBL* mg_virtual; /* pointer to magic functions */ ➋

U16 mg_private; ➌

char mg_type; ➍

U8 mg_flags; ➎

SV* mg_obj; ➏

char* mg_ptr; ➐

I32 mg_len; ➑

};

➊ First, we have a link to another magic structure: this creates a linked list, allowing
us to hang multiple pieces of magic off a single SV.

➋ The magic virtual table is a list of functions which should be called to perform
particular operations on behalf of the SV. For instance, a tied variable will
automagically call the C functionmagic_getpack when its value is being
retrieved. (This function will, in turn, call theFETCHmethod on the appropriate
object.)

ADVANCED: The magic virtual tables are provided by Perl - they’re in
perl.h and all begin PL_vtbl_ . For instance, the virtual table for %ENVis
PL_vtbl_env , and the table for individual elements of the %ENVhash is
PL_vtbl_envelem .

34

Chapter 4. Internal Variables

In theory, you can create your own virtual tables by providing functions to fill
the mgvtbl struct in mg.h , to allow for really bizarre behaviour to be
triggered by accesses to your SVs. In practice, nobody really does that,
although it’s conceivable that you can improve the speed of pure-C tied
variables that way. See also the discussion of "U" magic in Section 4.3.3
below.

➌ This is a storage area for data private to this piece of magic. The Perl core doesn’t
use this, but you can if you’re building your own magic types. For instance, you can
use it as a "signature" to ensure that this magic was created by your extension, not
by some other module.

➍ Magic comes in a number of varieties: as well as providing for tied variables,
magic propagates taintedness, makes special variables such as%ENVand%SIG

work, and allows for special things to happen when expressions like
substr($a,0,10) or $#array are assigned to.

Each of these different types of magic have a different "code letter" - the letters in
use are shown inperlguts .

➎ There are only four flags in use for magic; the most important is
MGf_REFCOUNTED, which is set ifmg_obj had its reference count increased when
it was added to the magic structure.

➏ This is another storage area; it’s normally used to point to the object of a tied
variable, so that tied functions can be located.

➐ The pointer field is set when you add magic to an SV with thesv_magic function.
(see below) You can put anything you like here, but it’s typically the name of the
variable. Built-in magical virtual table functions such asmagic_get check this to
process Perl’s special variables.

➑ This is the length of the string inmg_ptr .

35

Chapter 4. Internal Variables

What happens when the value of an SV with magic is retrieved? Firstly, a function
should callSvGETMAGIC(sv) to cause any magic to be performed. This in turn calls
mg_get which walks over the linked list of magic. For each piece of magic, it looks in
the magic virtual table, and calls the magical "get" function if there is one.

Let’s assume that we’re dealing with one of Perl’s special variables, which has only one
piece of magic, "\0" magic. The appropriate magic virtual table for "\0" magic is
PL_vtbl_sv , which is defined as follows: (inperl.h)

EXT MGVTBL PL_vtbl_sv = {MEMBER_TO_FPTR(Perl_magic_get),
MEMBER_TO_FPTR(Perl_magic_set),
MEMBER_TO_FPTR(Perl_magic_len),
0, 0};

Magic virtual tables have five elements, as seen inmg.h :

struct mgvtbl {
int (CPERLscope(*svt_get)) (pTHX_ SV *sv, MAGIC* mg);
int (CPERLscope(*svt_set)) (pTHX_ SV *sv, MAGIC* mg);
U32 (CPERLscope(*svt_len)) (pTHX_ SV *sv, MAGIC* mg);
int (CPERLscope(*svt_clear))(pTHX_ SV *sv, MAGIC* mg);
int (CPERLscope(*svt_free)) (pTHX_ SV *sv, MAGIC* mg);

};

So the above virtual table means "callPerl_magic_set when we want to get the
value of this SV; callPerl_magic_set when we want to set it; call
Perl_magic_len when we want to find its length; do nothing if we want to clear it or
when it is freed from memory."

In this case, we are getting the value, somagic_get is called.1 This function looks at
the value ofmg_ptr , which, as noted above, is often the name of the variable.
Depending on the name of the variable, it determines what to do: for instance, if
mg_ptr is "!" , then the current value of the C variableerrno is retrieved.

A similar process is performed bySvSETMAGIC(sv) to call functions that need to be
called when the value of an SV changes.

36

Chapter 4. Internal Variables

Adding magic to an SV

Magic is added by calling the functionsv_magic(SV* sv, SV* object,

char how, char* name, STRLEN len) . sv is the SV to add magic to;
object is the SV to be placed inmg_obj . how is the character representing
the "code letter" for the type of magic you wish to add.name andlen will
get stored inmg_ptr andmg_len respectively. This will also assign the
appropriate virtual table for the type of magic - see the list inperlguts .

Note that for user-defined magic, "~" magic, you must set the virtual table
manually. (Good luck.)

4.3.3. Tied Variables
Tied arrays and hashes are implementing by adding type "P" magic to their AVs and
HVs; individual elements of the arrays and hashes have "p" magic. Tied scalars and
filehandles have type "q" magic. The virtual tables for, for instance, "p" magic scalars
look like this:

EXT MGVTBL PL_vtbl_packelem = {MEMBER_TO_FPTR(Perl_magic_getpack),
MEMBER_TO_FPTR(Perl_magic_setpack),
0,
MEMBER_TO_FPTR(Perl_magic_clearpack),
0}

That’s to say, the functionmagic_getpack is called when the value of an element of a
tied array or hash is retrieved. This function in turn performs aFETCHmethod call on
the object stored inmg_obj .

We can invent our own "pseudo-tied" variables, using the user-defined "U" magic. "U"
magic only works on scalars, and allows us to call a function when the value of the
scalar is got or set. The virtual table for "U" magic scalars is as follows:

EXT MGVTBL PL_vtbl_uvar = {MEMBER_TO_FPTR(Perl_magic_getuvar),

37

Chapter 4. Internal Variables

MEMBER_TO_FPTR(Perl_magic_setuvar),
0, 0, 0};

As you should by now expect, these functions are called when the value of the scalar is
accessed. They in turn call our user-defined functions. But how do we tell them what
our functions are? In this case, we pass a pointer to a special structure in themg_ptr

field; the structure is defined inperl.h , and looks like this:

struct ufuncs {
I32 (*uf_val)(IV, SV*);
I32 (*uf_set)(IV, SV*);
IV uf_index;

};

Here are our two function pointers:uf_val is called with the value ofuf_index and
the scalar when the value is sought, anduf_set is called with the same parameters
when it is set.

Hence, the following code allows us to emulate$! :

I32 get_errno(IV index, SV* sv) {
sv_setiv(sv, errno);

}

I32 set_errno(IV index, SV* sv) {
errno = SvIV(sv); /* Some Cs don’t like us setting errno, but hey */

}

struct ufuncs uf;

/* This is XS code */

void
magicify(sv)

SV *sv;
CODE:

uf.uf_val = &get_errno;
uf.uf_set = &set_errno;

38

Chapter 4. Internal Variables

uf.uf_index = 0;
sv_magic(sv, 0, ’U’, (char*)&uf, sizeof(uf));

If you need any more flexibility than that, it’s time to look into "~" magic.

4.3.4. Globs and Stashes
SVs that represent variables are kept in the symbol table; as you’ll know from your Perl
programming, the symbol table starts at%main:: and is an ordinary Perl hash, with the
package and variable names as hash keys. But what are the hash values? Let’s have a
look:

% perl -le ’$a=5; print ${main::}{a}’
*main::a

Well, that doesn’t tell us very much - at first sight it just looks like an ordinary string.
But if we useDevel::Peek on it, we find it’s actually something else - a glob, or GV:

% perl -MDevel::Peek -e ’$a=5; Dump ${main::}{a}’
SV = PVGV(0x80fe3e0) at 0x80fb3ec

REFCNT = 2
FLAGS = (GMG,SMG) ➊

IV = 0
NV = 0
MAGIC = 0x80fea50

MG_VIRTUAL = &PL_vtbl_glob ➊

MG_TYPE = ’*’
MG_OBJ = 0x80fb3ec ➋

MG_LEN = 1
MG_PTR = 0x81081d8 "a"

NAME = "a" ➌

NAMELEN = 1
GvSTASH = 0x80f1388 "main" ➍

39

Chapter 4. Internal Variables

GP = 0x80ff2b0 ➎

SV = 0x810592c ➏

REFCNT = 1 ➐

IO = 0x0 ➑

FORM = 0x0 ➑

AV = 0x0 ➑

HV = 0x0 ➑

CV = 0x0 ➑

CVGEN = 0x0 ➒

GPFLAGS = 0x0 (10)
LINE = 1
FILE = "-e"
FLAGS = 0x0
EGV = 0x80fb3ec "a"

➊ Globs have get and set magic to handle glob aliasing as well as the conversion to
strings we saw above.

➋ The glob’s magic object points back to the GV itself, so that the magic functions
can easily access it.

➌ The "name" is simply the variable’s unqualified name; this is combined with the
"stash" below to make up the "full name".

➍ The stash itself is a pointer to the hash in which this glob is contained.

➎ This structure, a GP structure, actually holds the symbol table entry. It’s separated
out so that, in the case of aliased globs, multiple GVs can point to the same GP.

➏ As we know, globs have several different "slots", for scalars, arrays, hashes and so
on. This is the scalar slot, which is a pointer to an SV.

➐ The GP is refcounted because we need to know how many GVs point to it, so it can
be safely destroyed when no longer needed.

➑ The other slots are a filehandle, a form, an array, a hash and a code value. (see
Section 4.3.5)

40

Chapter 4. Internal Variables

➒ This stores the "age" of the code value. Every time a subroutine is defined, Perl
increments the variablePL_sub_generation . This can be used as a way of
checking the method cache: if the current value ofPL_sub_generation is equal
to the one stored in a GP, this GP is still valid.

(10)The GP’s flags are currently unused.

Symbol tables are considered some of the hairiest voodoo in the Perl internals.

ADVANCED: From C, the variable PL_defstash is the HV representing the
main:: stash; PL_curstash contains the current package’s stash.

4.3.5. Code Values
The final data type we will examine is the CV, a code value used for storing
subroutines. Both Perl and XSUB subroutines are stored in CVs, and blocks are also
stored in CVs. The CV structure can be found incv.h :

struct xpvcv {
char * xpv_pv; /* pointer to malloced string */
STRLEN xpv_cur; /* length of xp_pv as a C string */
STRLEN xpv_len; /* allocated size */
IV xof_off; /* integer value */
NV xnv_nv; /* numeric value, if any */
MAGIC* xmg_magic; /* magic for scalar array */
HV* xmg_stash; /* class package */

HV * xcv_stash; ➊

OP * xcv_start; ➋

41

Chapter 4. Internal Variables

OP * xcv_root; ➋

void (*xcv_xsub) (pTHXo_ CV*); ➌

ANY xcv_xsubany; ➍

GV * xcv_gv; ➎

char * xcv_file; ➏

long xcv_depth; /* >= 2 indicates recursive call */ ➐

AV * xcv_padlist; ➑

CV * xcv_outside; ➒

#ifdef USE_THREADS
perl_mutex *xcv_mutexp; (10)
struct perl_thread *xcv_owner; /* current owner thread */ (10)

#endif /* USE_THREADS */
cv_flags_t xcv_flags; (10)

}

➊ Although it might look like this provides the CV’s stash, it is important to note that
this is a pointer to the stash in which the CV wascompiled; for instance, given

package First;
sub Second::mysub { ...}

thenxcv_stash points toFirst:: . This is why, for instance,
package One;
$x = "In One";
package Two;
$x = "In Two";
sub One::test { print $x }
package main;
One::test();

will print "In Two" .

➋ For a subroutine defined in Perl, these two pointers hold the start and the root of
the compiled op tree; this will be further inChapter 6.

➌ For an XSUB, on the other hand, this field contains a function pointer pointing to
the C function implementing the subroutine.

42

Chapter 4. Internal Variables

➍ This is how constant subroutines are implemented: Perl can arrange for the SV
representing the constant to be returned by a constant XS routine, which is hung
here.

➎ This simply holds a pointer to the glob by which the subroutine was defined.

➏ This stores the name of the file in which the subroutine was defined. For an XSUB,
this will be the.c file rather than the.xs file.

➐ This is a counter which is incremented each time the subroutine is entered and
decremented when it is left; this allows Perl to keep track of recursive calls to a
subroutine.

➑ Explained below,xcv_padlist , the pad list, contains the lexical variables
declared in a subroutine or code block.

➒ Consider the following code:
{

my $x = 0;
sub counter { return ++$x; }

}

When insidecounter , where does Perl "get" the SV$x from? It’s not a global, so
it doesn’t live in a stash. It’s not declared incounter , so it doesn’t belong in
counter ’s pad list. It actually belong to the pad list for the CV "outside" of
counter . To enable Perl to get at these variables and also at lexicals used in
closures, each CV contains a pointer to CV of the enclosing scope.

4.3.6. Lexical Variables
Global variables live, as we’ve seen, in symbol tables or "stashes". Lexical variables, on
the other hand, are tied to blocks rather than packages, and so are stored inside the CV
representing their enclosing block.

43

Chapter 4. Internal Variables

As mentioned briefly above, thexcv_padlist element holds a pointer to an AV. This
array, the padlist, contains the names and values of lexicals in the current code block.
Again, a diagram is the best way to demonstrate this:

The first element of the padlist - called the "padname" - is an array containing the
names of the variables, and the other elements are lists of the current values of those
variables. Why do we have several lists of current values? Because a CV may be
entered several times - for instance, when a subroutine recurses. Having, essentially, a
stack of frames ensures that we can restore the previous values when a recursive call
ends. Hence, the current values of lexical variables are stored in the last element on the
padlist.

ADVANCED: From inside perl, you can get at the current pad as
PL_curpad . Note that this is the pad itself, not the padlist. To get the padlist,
you need to perform some awkwardness:

I32 cxix = dopoptosub(cxstack_ix) /* cxstack_ix is a macro */
AV* padlist = cxix ? CvPADLIST(cxstadck[ix].blk_sub.cv) : PL_comppadlist;

We’ll visit pads again when we look at operator targets in Section 6.4.

4.4. Inheritance
As we have seen, some types of SV deliberately build on and extend the structure of
others. The SV code is written to attempt to provide an object-oriented style of
programming inside C, and it is fair to say that some SV "classes" inherit from others.
In the compiler moduleB, we see these inheritance relationships spelt out:

@B::PV::ISA = ’B::SV’;
@B::IV::ISA = ’B::SV’;
@B::NV::ISA = ’B::IV’;
@B::RV::ISA = ’B::SV’;

44

Chapter 4. Internal Variables

@B::PVIV::ISA = qw(B::PV B::IV);
@B::PVNV::ISA = qw(B::PV B::NV);
@B::PVMG::ISA = ’B::PVNV’;
@B::PVLV::ISA = ’B::PVMG’;
@B::BM::ISA = ’B::PVMG’;
@B::AV::ISA = ’B::PVMG’;
@B::GV::ISA = ’B::PVMG’;
@B::HV::ISA = ’B::PVMG’;
@B::CV::ISA = ’B::PVMG’;
@B::IO::ISA = ’B::PVMG’;
@B::FM::ISA = ’B::CV’;

4.5. Summary
Perl uses several variable types in its internal representation to achieve the flexibility
that is needed for its external types: scalars, (SVs) arrays, (AVs) hashes (HVs) and code
blocks. (CVs)

The moduleDevel::Peek allows us to examine how Perl types are repesented
internally. The field names produced byDevel::Peek can be easily turned into
macros which allow us to get and set the values of the fields from C.

The key files from the Perl source tree which deal with Perl’s internal variables are
sv.c , av.c andhv.c ; the documentation in the associated header files (sv.h , av.h

andhv.h) is extremely helpful for understanding how to deal with Perl’s internal
variables.

4.6. Exercises

1. One thing we didn’t do in this chapter was runDevel::Peek on a subroutine. Try
it on a named subroutine reference, an anonymous subref and a subref to an XS

45

Chapter 4. Internal Variables

routine.

2. See if you can work out what ’FM’, ’IO’, ’BM’ and ’PVLV’ are in the above; try
creating them in Perl and dumping them out withDevel::Peek . Usesv.h to
explain the new fields.

Notes
1. We’ll see later that Perl uses thePerl_ prefix internally for function names, but

that prefix can be omitted inside the Perl core. Hence, we’ll callPerl_magic_get

"magic_get ".

46

Chapter 5. The Lexer and the Parser
In this chapter, we’re going to examine how Perl goes about turning a piece of Perl
code into an internal representation ready to be executed. The nature of the internal
representation, a tree of structures representing operations, will be looked at in the next
chapter, but here we’ll just concern ourselves with the lexer and parser which work
together to "understand" Perl code.

5.1. The Parser
The parser lives inperly.y . This is code in a language called Yacc, which is
converted to C using thebyacccommand.

ADVANCED: In fact, Perl needs to do some fixing up on the byacc output to
have it deal with dynamic rather than static memory allocation. Hence, if you
make any changes to perly.y , just running byacc isn’t enough - you need
to run the Make target run_byacc , which will do the fixups that Perl requires.

In order to understand this language, we need to understand how grammars work and
how parsing works.

5.1.1. BNF and Parsing
Computer programmers define a language by its grammar, which is a set of rules. They
usually describe this grammar in a form called "Backhaus-Naur Form"1 or BNF. BNF
tells us how phrases fit together to make sentences. For instance, here’s a simple BNF
for English - obviously, this isn’t going to describe the whole of the English grammar,
but it’s a start:

sentence : nounphrase verbphrase nounphrase;

47

Chapter 5. The Lexer and the Parser

verbphrase : VERB;

nounphrase : NOUN
| ADJECTIVE nounphrase
| PRONOMINAL nounphrase
| ARTICLE nounphrase;

Here is the prime rule of BNF: you can make the thing on the left of the colon if you see
all the things on the right in sequence. So, this grammar tells us that a sentence is made
up of a noun phrase, a verb phrase and then a noun phrase. The vertical bar does exactly
what it does in regular expressions: you can make a noun phrase if you have a noun, or
an adjective plus another noun phrase, or an article plus a noun phrase. Turning the
things on the right into the thing on the left is called areduction. The idea of parsing is
to reduce all of the input down to the first thing in the grammar - a sentence.

You’ll notice that things which can’t be broken down any further are in capitals -
there’s no rule which tells us how to make a noun, for instance. This is because these
are fed to us by the lexer; these are calledterminal symbols, and the things which aren’t
in capitals are callednon-terminal symbols. Why? Well, let’s see what happens if we
try and parse a sentence in this grammar.

The text right at the bottom - "my cat eats fish" - is what we get in from the user. The
tokeniser then turns that into a series of tokens - "PRONOMINAL NOUN VERB
NOUN". From that, we can start performing some reductions: we have a pronominal,
so we’re looking for a noun phrase to satisfy thenounphrase : PRONOMINAL

nounphrase rule. Can we make a noun phrase? Yes, we can, by reducing theNOUN

("cat") into anounphrase . Then we can usePRONOMINAL nounphrase to make
anothernounphrase .

Now we’ve got anounphrase and aVERB. We can’t do anything further with the
nounphrase , so we’ll switch to theVERB, and the only thing we can do with that is
turn it into averbphrase . Finally, we can reduce the noun to anounphrase , leaving
us withnounphrase verbphrase nounphrase . Since we can turn this into a
sentence , we’ve parsed the text.

48

Chapter 5. The Lexer and the Parser

5.1.2. Parse actions and token values
It’s important to note that the tree we’ve constructed above - the "parse tree" - is only a
device to help us understand the parsing process. It doesn’t actually exist as a data
structure anywhere in the parser. This is actually a little inconvenient, because the
whole point of parsing a piece of Perl text is to come up with a data structure pretty
much like that.

Not a problem. Yacc allows us to extend BNF by adding actions to rules - every time
the parser performs a reduction using a rule, it can trigger a piece of C code to be
executed. Here’s an extract from Perl’s grammar inperly.y :

term : term ASSIGNOP term
{ $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }

| term ADDOP term
{ $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

The pieces of code in the curlies are actions to be performed. Here’s the final piece of
the puzzle: each symbol carries some additional information around. For instance, in
our "cat" example, the firstNOUNhad the value "cat". You can get at the value of a
symbol by a Yacc variable starting with a dollar sign: in the example above,$1 is the
value of the first symbol on the right of the colon (term), $2 is the value of the second
symbol (eitherASSIGNOPor ADDOPdepending on which line you’re reading) and so
on.$$ is the value of the symbol on the left. Hence information is propagated "up" the
parse tree by manipulating the information on the right and assigning it to the symbol
on the left.

5.1.3. Parsing some Perl
So, let’s see what happens if we parse the Perl code$a = $b + $c . We have to
assume that$a , $b and$c have already been parsed a little; they’ll turn intoterm

symbols. Each of these symbols will have a value, and that will be an "op". An "op" is a
data structure representing an operation, and the operation to be represented will be that
of retrieving the storage pointed to by the appropriate variable.

49

Chapter 5. The Lexer and the Parser

Let’s start from the right2 , and deal with$b + $c . The+ is turned by the lexer into
the terminal symbolADDOP. Now, just like there can be lots of different nouns that all
get tokenised toNOUN, there can be several differentADDOPs - concatenation is
classified as anADDOP, so$b . $c would look just the same to the parser. The
difference, of course, is the value of the symbol - thisADDOPwill have the value’+’ .

Hence, we haveterm ADDOP term . This means we can perform a reduction, using
the second rule in our snippet. When we do that, we have to perform the code in curlies
underneath the rule -{ $$ = newBINOP($2, 0, scalar($1), scalar($3));

} . newBINOP is a function which creates a new binary "op". The first argument is the
type of binary operator, and we feed it the value of the second symbol. This isADDOP,
and as we have just noted, this symbol will have the value’+’ . So although’.’ and
’+’ look the same to the parser, they’ll eventually be distinguished by the value of their
symbol. Back tonewBINOP. The next argument is the flags we wish to pass to the op.
We don’t want anything special, so we pass zero.

Then we have our arguments to the binary operator - obviously, these are the value of
the symbol on the left and the value of the symbol on the right of the operator. As we
mentioned above, these are both "op"s, to retrieve the values of$b and$c respectively.
We assign the new "op" created bynewBINOP to be the value of the symbol we’re
propagating upwards. Hence, we’ve taken two ops - the ones for$b and$c - plus an
addition symbol, and turned them into a new op representing the combined action of
fetching the values of$b and$c and then adding them together.

Now we do the same thing with$a = ($b+$c) . I’ve put the right hand side in
brackets to show that we’ve already got something which represents fetching$b and$c

and adding them.= is turned into anASSIGNOPby the tokeniser in the same way as we
turned+ into anADDOP. And, in just the same way, there are various different types of
assignment operator -||= and&&= are also passed asASSIGNOPs. From here, it’s easy:
we take theterm representing$a, plus theASSIGNOP, plus theterm we’ve just
constructed, reduce them all to anotherterm , and perform the action underneath the
rule. In the end, we end up with a data structure a little like this:

You can find a hypertext version of the Perl grammar at
http://simon-cozens.org/hacks/grammar.pdf

50

Chapter 5. The Lexer and the Parser

5.2. The Tokeniser
The tokeniser, intoke.c is one of the most difficult parts of the Perl core to
understand; this is primarily because there is no real "roadmap" to explain its operation.
In this section, we’ll try to show how the tokeniser is put together.

5.2.1. Basic tokenising
The core of the tokeniser is the intimidatingly longyylex function. This is the function
called by the parser,yyparse , when it requests a new token of input.

First, some basics. When a token has been identified, it is placed inPL_tokenbuf . The
file handle from which input is being read isPL_rsfp . The current position in the input
is stored in the variablePL_bufptr , which is a pointer into the PV of the SV
PL_linestr . When scanning for a token, the variables advances from the start of
PL_bufptr towards the end of the buffer (PL_bufend) until it finds a token.

The first thing the parser does is test whether the next thing in the input stream has
already been identified as an identifier; when the tokeniser sees’%’ , ’$’ and the like
as part of the input, it tests to see whether it introduces a variable. If so, it puts the
variable name into the token buffer. It then returns the type sigil (%, $, etc.) as a token,
and sets a flag (PL_pending_ident) so that the next timeyylex is called, it can pull
the variable name straight out of the token buffer. Hence, right at the top ofyylex ,
you’ll see code which testsPL_pending_ident and deals with the variable name.

5.2.1.1. Tokeniser State

Next, if there’s no identifier in the token buffer, it checks its tokeniser state. The
tokeniser uses the variablePL_lex_state to store state information.

One important state isLEX_KNOWNEXT, which occurs when Perl has had to look ahead
one token to identify something. If this happens, it has tokenised not just the next
token, but the one after as well. Hence, it setsLEX_KNOWNEXTto say "we’ve already
tokenised this token, simply return it."

51

Chapter 5. The Lexer and the Parser

The functions which setLEX_KNOWNEXTareforce_word , which declares that the next
token has to be a word, (for instance, after having seen an arrow in$foo->bar)
force_ident , which makes the next token an identifier, (for instance, if it sees a*

when not expecting an operator, this must be a glob)force_version , (on seeing a
number afteruse) and the generalforce_next .

Many of the other states are to do with interpolation of double-quoted strings; we’ll
look at those in more detail in the next section.

5.2.1.2. Looking ahead

After checking the lexer state, it’s time to actually peek at the buffer and see what’s
waiting; this is the start of the giantswitch statement in the middle ofyylex , just
following the labelretry .

One of the first things we check for is character zero - this signifies either the start or
the end of the file or the end of the line. If it’s the end of the file, the tokeniser returns
zero and the game is one; at the beginning of the file, Perl has to process the code for
command line switches such as-n and-p . Otherwise, Perl callsfilter_gets to get a
new line from the file through the source filter system, and callsincline to increase
the line number.

The next test is for comments and new lines, which Perl skips over. After that come the
tests for individual special characters. For instance, the first test is for minus, which
could be unary minus if followed by a number or identifier, or the binary minus
operator if Perl is expecting an operator, or the arrow operator if followed by a>, or the
start of a filetest operator if followed by an appropriate letter, or a quoting option such
as(-foo => "bar") . Perl tests for each case, and returns the token type using one
of the upper-case token macros defined at the beginning oftoke.c : OPERATOR, TERM,
and so on.

If the next character isn’t a symbol that Perl knows about, it’s an alphabetic character
which might start a keyword: the tokeniser jumps to the labelkeylookup where it
checks for labels and things likeCORE::function . It then callskeyword to test
whether it is a valid built-in or not - if so,keyword turns it into a special constant (such
asKEY_open) which can be fed into theswitch statement. If it’s not a keyword, Perl

52

Chapter 5. The Lexer and the Parser

has to determine whether it’s a bareword, a function call or an indirect object or method
call.

5.2.1.3. Keywords

The final section of theswitch statement deals with theKEY_constants handed back
from keyword , performing any actions necessary for using the builtins. (For instance,
given__DATA__, the tokeniser sets up theDATAfilehandle.)

5.2.2. Sublexing
"Sublexing" refers to the the fact that inside double-quoted strings and other
interpolation contexts (regular expressions, for instance) a different type of tokenisation
is needed.

This is typically started after a call toscan_str , which is an exceptionally clever piece
of code which extracts a string with balanced delimiters, placing it into the SV
PL_lex_stuff . Thensublex_start is called which sets up the data structures used
for sublexing and changes the lexer’s state toLEX_INTERPPUSH, which is essentially a
scoping operator for sublexing.

Why does sublexing need scoping? Well, consider something like
"Foo\u\LB\uarBaz" . This actually gets tokenized as the moral equivalent of"Foo"

. ucfirst(lc("B" . ucfirst("arBaz"))) . The push state (which makes a call
to sublex_push) quite literally pushes an opening bracket onto the input stream.

This in turn changes the state toLEX_INTERPCONCAT; the concatentation state uses
scan_const to pull out constant strings and supplies the concatenation operator
between them. If a variable to be interpolated is found, the state is changed to
LEX_INTERPSTART: this means that"foo$bar" is changed into"foo".$bar and
"foo@bar" is turned into"foo".join($",@bar) .

There are times when it is not sure when sublexing of an interpolated variable should
end - in these cases, the horrifyingly scary functionintuit_more is called to make an

53

Chapter 5. The Lexer and the Parser

educated guess on the likelihood of more interpolation.

Finally, once sublexing is done, the state is set toLEX_INTERPENDwhich fixes up the
closing brackets.

5.3. Summary
In this chapter, we’ve briefly examined how Perl turns Perl source input into a tree data
structure suitable for executing; in the next chapter, we’ll look more specifically at the
nature of the nodes in that tree.

There are two stages to this operation: the tokeniser,toke.c , chops up the incoming
program and recognises different token types; the parserperly.y then assembles these
tokens into phrases and sentences. In reality, the whole task is driver by the parser - Perl
callsyyparse to parse a program, and when the parser needs to know about the next
token, it callsyylex .

While the parser is relatively straightforward, the tokeniser is somewhat more tricky.
The key to understanding it is to divide its operation into checking tokeniser state,
dealing with non-alphanumeric symbols in ordinary program code, dealing with
alphanumerics, and dealing with double-quoted strings and other interpolation contexts.

Very few people actually understand the whole of how the tokeniser and parser work,
but this chapter should have given you a useful insight into how Perl understands
program code, and how to locate the source of particular behaviour inside the parsing
system.

5.4. Exercises

1. What do you think theLEX_FORMLINEstate is for? Work out what it does.

54

Chapter 5. The Lexer and the Parser

2. You can put#!perl -p at the top of your file and Perl will behave as though the
-p command-line switch was given. Since exactly the same mechanism handles
incoming code from a file and fromeval , why won’t it do that if you sayeval

qq[#!perl -p] ?

3. Why is --$a++ a syntax error? Explain in terms of how it should be parsed. Look
for thePREDECandPOSTINCtypes in the grammar. What would you need to
change to make it parse?

4. In the current Perl source, just aftercase "#": , you’ll find test marked "Found
by Ilya", which tests for a buffer overflow. How could that conceivably occur?
Work out what would trigger the error message and produce some Perl code which
would do so.

Notes
1. Sometimes "Backhaus Normal Form"

2. This is slightly disingenous, as parsing is always done from left to right, but this
simplification is easier than getting into the details of how Yacc grammars
recognise the precendence of operators.

55

Chapter 6. Fundamental Operations
So we’ve seen that the job of the parsing stage is to reduce a program to a tree structure,
and each node of the tree represents an operation. In this chapter, we’ll look more
closely at those operations: what they are, how they’re coded, and how they fit together.

6.1. The basic op
Just AVs and HVs are "extensions" of the basic SV structure, there are a number of
different "flavours" of ops, built on a basic OP structure; you can find this structure
defined asBASEOPin op.h :

OP* op_next;
OP* op_sibling;
OP* (CPERLscope(*op_ppaddr))(pTHX);
PADOFFSET op_targ;
OPCODE op_type;
U16 op_seq;
U8 op_flags;

U8 op_private;

Some of these fields are easy to explain, so we’ll deal with them now.

Theop_next field is a pointer to the next op which needs to be executed. We’ll see
later, inSection 6.1.3, how the "thread of execution" is derived from the tree.

op_ppaddr is the address of the C function which carries out this particular operation.
It’s stored here so that our main execution code can simply dereference the function
pointer and jump to it, instead of having to perform a lookup.

Each unique operation has a different number; this can be found in theenum in
opnames.h :

typedef enum opcode {

56

Chapter 6. Fundamental Operations

OP_NULL, /* 0 */
OP_STUB, /* 1 */
OP_SCALAR, /* 2 */
OP_PUSHMARK, /* 3 */
OP_WANTARRAY, /* 4 */
OP_CONST, /* 5 */
OP_GVSV, /* 6 */
OP_GV, /* 7 */
...

};

The number of the operation to perform is stored in theop_type field. We’ll examine
some of the more interesting operations inSection 6.1.1.

op_flags is a set of flags generic to all ops;op_private stores flags which are
specific to the type of op. For instance, therepeat op which implements thex
operator has the flagOPpREPEAT_DOLISTset when it’s repeating a list rather than a
string. This flag only makes sense for that particular operation, so is stored in
op_private . Private flags have theOPpprefix, and public flags begin withOPf.

op_seq is a sequence number allocated by the optimizer. It allows for, for instance,
correct scoping of lexical variables by storing the sequence numbers of the beginning
and end of scope operations inside the pad.

As for the remaining fields, we’ll examineop_sibling in Section 6.1.2andop_targ

in Section 6.4

6.1.1. The different operations
Perl has currently 351 different operations, implementing all the built-in functions and
operators, as well as the more structural operations required internally - entering and
leaving a scope, compiling regular expressions and so on.

The arrayPL_op_desc in opcode.h describes each operation: it may be easier to
follow the data from which this table is generated, at the end ofopcode.pl . We’ll take
a longer look at that file later on in this chapter.

57

Chapter 6. Fundamental Operations

Many of the operators are familiar from Perl-space, such asconcat andsplice , but
some are used purely internally: for instance, one of the most common,gvsv fetches a
scalar variable;enter andleave are block control operators, and so on.

6.1.2. Different "flavours" of op
There are a number of different "flavours" of op structure, related to the arguments of
an operator and how it fits together with other ops in the op tree. For instance,scalar

is a unary operator, a UNOP. This extends the basic op structure above with a link to
the argument:

struct unop {
BASEOP
OP * op_first;

};

Binary operators, such asi_add , (integer addition) have both afirst and alast :

struct binop {
BASEOP
OP * op_first;
OP * op_last;

};

List operators are more interesting; they too have afirst and alast , but they also
have some ops in the middle, too. This is whereop_sibling above comes in; it
connects ops "sibling" ops on the same level in a list. For instance, look at the
following code and the graph of its op tree:

open FILE, "foo";
print FILE "hi\n";
close FILE;

58

Chapter 6. Fundamental Operations

The dashed lines representop_sibling connections. The root operator of every
program is the list operatorleave , and its children are the statements in the program,
separated bynextstate (next statement) operators.open is also a list operator, as is
print . The first child ofprint is pushmark , which puts a mark on the stack (see
Section 6.2.1) so that Perl knows how many arguments on the stack belong toprint .
Therv2gv turns a reference to the filehandleFILE into a GV, so thatprint can print
to it, and the final child is the constant"hi\n" .

Some operators hold information about the program; these are COPs, or "code
operators". Their definition is incop.h :

struct cop {
BASEOP
char * cop_label; /* label for this construct */

#ifdef USE_ITHREADS
char * cop_stashpv; /* package line was compiled in */
char * cop_file; /* file name the following line # is from */

#else
HV * cop_stash; /* package line was compiled in */
GV * cop_filegv; /* file the following line # is from */

#endif
U32 cop_seq; /* parse sequence number */
I32 cop_arybase; /* array base this line was compiled with */
line_t cop_line; /* line # of this command */
SV * cop_warnings; /* lexical warnings bitmask */
SV * cop_io; /* lexical IO defaults */

};

COPs are inserted between every statement; they contain the label (forgoto , next and
so on) of the statement, the file name, package and line number of the statement and
lexical hints such as the current value of$[, warnings and IO settings. Note that this
doesn’t contain the current CV or the padlist - these are kept on a special stack called
the "context stack".

The final type of op is the null op: any op with type zero means that a previous op has
been optimized away; we’ll look at how this is done later in this chapter, but for now,
you should skip over the null op when you see it in op trees.

59

Chapter 6. Fundamental Operations

6.1.3. Tying it all together
We’ve so far seen a little of how the op tree is connected together withop_first ,
op_last , op_sibling , and so on. Now we’ll look at how the tree gets manufactured,
as how it gets executed.

6.1.3.1. "Tree" order

After our investigation of the parser in the previous chapter, it should now be
straightforward to see how the op tree is created. The parser calls routines inop.c

which create the op structures, passing ops further "down" the parse tree as arguments.
This threads together a tree as shown in the diagram above. For comparison, here is the
what the example in that chapter ($a = $b + $c) really looks like as an op tree:

Again, you can see the places where an op was optimized away and became a null op.
This is not so different from the simplified version we gave earlier.

6.1.3.2. Execution Order

The second thread through the op tree, indicated by the dotted line in our diagrams, is
the execution order. This is the order in which Perl must actually perform the
operations in order to run the program. The main loop of Perl is very, very simple, and
you can see it inrun.c :

while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX))) {
PERL_ASYNC_CHECK();

}

That’s it. That’s all the Perl interpreter is.PL_op represents the op that’s currently
being executed. Perl calls the function pointer for that op and expects another op to be
returned; this return value is then set toPL_op , which is executed in turn. Since
everything apart from conditional operators (for obvious reasons) just return
PL_op->op_next , the execution order through a program can be found by chasing the
trail of op_next pointers from the start node to the root.

60

Chapter 6. Fundamental Operations

We can trace the execution order in several ways: if Perl is built with debugging, then
we can say

perl -Dt -e ’open ...’

Alternatively, and perhaps more simply, the compiler moduleB::Terse (seeChapter
7) has an option to print the execution order,-exec . For instance, in our
"open-print-close" example above, the execution order is:

% perl -MO=Terse,-exec -e ’open FILE, "foo"; ...’
OP (0x8111510) enter

COP (0x81121c8) nextstate

OP (0x8186f30) pushmark

SVOP (0x8186fe0) gv GV (0x8111bd8) *FILE

SVOP (0x8186f10) const PV (0x810dd98) "foo"

LISTOP (0x810a170) open [1]

COP (0x81114d0) nextstate

OP (0x81114b0) pushmark

SVOP (0x8118318) gv GV (0x8111bd8) *FILE

UNOP (0x8111468) rv2gv

SVOP (0x8111448) const PV (0x8111bfc) "hi\n"

LISTOP (0x8111488) print

COP (0x8111fe0) nextstate

SVOP (0x8111fc0) gv GV (0x8111bd8) *FILE

UNOP (0x8111fa0) close

LISTOP (0x8111420) leave [1]

This program, just like every other program, starts with theenter andnextstate ops
to enter a scope and begin a new statement respectively. Then a mark is placed on the
argument stack: marks represent the start of a set of arguments, and a list operator can
retrieve all the arguments by pushing values off the stack until it finds a mark. Hence,
we’re notifying Perl of the beginning of the arguments to theopen operator.

The arguments in this case are merely the file handle to be opened and the file name;
after operators put these two arguments on the stack,open can be called. This is the
end of the first statement.

61

Chapter 6. Fundamental Operations

Next, the arguments toprint begin. This is slightly more tricky, because whileopen

can only take a true filehandle,print may take any sort of reference. Hence,gv

returns the GV and then this is turned into the appropriate filehandle type by therv2gv

operator. After the filehandle come the arguments to be printed; in this case, a constant
("hi\n"). Now all the arguments have been placed on the stack,print can be called.
This is the end of the second statement.

Finally, a filehandle is put on the stack and closed. Note that at this point, the
connections between the operators - unary, binary, etc. - are not important; all
manipulation of values comes not by looking at the children of the operators but by
looking at the stack. The types of op are important for the construction of the tree in
"tree order", but the stack and theop_next pointers are the only important things for
the execution of the tree in execution order.

ADVANCED: How is the execution order determined? The function
linklist in op.c takes care of threading the op_next pointers in prefix
order. It does so by recursively applying the following rule:

• If there is a child for the current operator, visit the child first, then its
siblings, then the current op.

Hence, the starting operator is always the first child of the root operator,
(always enter) the second op to be executed is its sibling, nextstate , and
then the children of the next op are visited. Similarly, the root itself (leave) is
always the last operator to be executed. Null operators are skipped over
during optimization.

6.2. PP Code
We know the order of execution of the operations, and what some of them do. Now it’s
time to look at how they’re actually implemented - the source code inside the

62

Chapter 6. Fundamental Operations

interpreter that actually carries outprint , +, and other operations.

The functions which implement operations are known as "PP Code" - "Push / Pop
Code" - because most of their work involves popping off elements from a stack,
performing some operation on it, and then pushing the result back. PP code can be
found in several files:pp_hot.c contains frequently used code, put into a single object
to encourage CPU caching;pp_ctl.c contains operations related to flow control;
pp_sys.c contains the system-specific operations such as file and network handling;
pack andunpack recently moved topp_pack.c , andpp.c contains everything else.

6.2.1. The argument stack
We’ve already talked a little about the argument stack. The Perl interpreter makes use
of several stacks, but the argument stack is the main one.

The best way to see how the argument stack is used is to watch it in operation. With a
debugging build of Perl, the-Ds command line switch prints out the contents of the
stack in symbolic format between operations. Here is a portion of the output of running
$a=5; $b=10; print $a+$b; :

(-e:1) nextstate
=>

(-e:1) pushmark
=> *

(-e:1) gvsv(main::a)
=> * IV(5)

(-e:1) gvsv(main::b)
=> * IV(5) IV(10)

(-e:1) add
=> * IV(15)

(-e:1) print
=> SV_YES

At the beginning of a statement, the stack is typically empty. First, Perl pushes a mark
onto the stack to know when to stop pushing off arguments forprint . Next, the values
of $a and$b are retrieved and pushed onto the stack.

63

Chapter 6. Fundamental Operations

The addition operator is a binary operator, and hence, logically, it takes two values off
the stack, adds them together and puts the result back onto the stack. Finally,print

takes all of the values off the stack up to the previous bookmark and prints them out.
Let’s not forget thatprint itself has a return value, the true valueSV_YESwhich it
pushes back onto the stack.

6.2.2. Stack manipulation
Let’s now take a look at one of the PP functions, the integer addition function
pp_i_add . The code may look formidable, but it’s a good example of how the PP
functions manipulate values on the stack.

PP(pp_i_add) ➊

{
dSP; dATARGET; tryAMAGICbin(add,opASSIGN); ➋

{
dPOPTOPiirl_ul; ➌

SETi(left + right); ➍

RETURN; ➎

}
}

➊ In case you haven’t guessed,everythingin this function is a macro. This first line
declares the functionpp_i_add to be the appropriate type for a PP function.

➋ Since following macros will need to manipulate the stack, the first thing we need is
a local copy of the stack pointer,SP. And since this is C, we need to declare this in
advance:dSP declares a stack pointer. Then we need an SV to hold the return value,
a "target". This is declared withdATARGET; seeSection 6.4for more on how targets
work. Finally, there is a chance that the addition operator has been overloaded using
theoverload pragma. ThetryAMAGICbin macro tests to see if it is appropriate to
perform "A" (overload) magic on either of the scalars in a binary operation, and if
so, does the addition using a magic method call.

64

Chapter 6. Fundamental Operations

➌ We will deal with two values,left andright . ThedPOPTOPiirl_ul macro
pops two SVs off the top of the stack, converts them to two integers (henceii) and
stores them into automatic variablesright andleft . (hencerl)

ADVANCED: The _ul ? Look up the definition in pp.h and work it out...

➍ We add the two values together, and set the integer value of the target to the result,
pushing the target to the top of the stack.

➎ As mentioned above, operators are expected to return the next op to be executed,
and in most cases this is simply the value ofop_next . HenceRETURNperforms a
normal return, copying our local stack pointerSPwhich we obtained above back
into the global stack pointer variable, and then returning theop_next .

As you might have guessed, there are a number of macros for controlling what happens
to the stack; these can be found inpp.h . The more common of these are:

POPs

Pop an SV off the stack and return it.

POPpx

Pop a string off the stack and return it. (Note: requires a variable "STRLENn_a "
to be in scope.)

POPn

Pop an NV off the stack.

65

Chapter 6. Fundamental Operations

POPi

Pop an IV off the stack.

TOPs

Return the top SV on the stack, but do not pop it. (The macrosTOPpx, TOPn, etc.
are analogous)

TOPm1s

Return the penultimate SV on the stack. (There is noTOPm1px, etc.)

PUSHs

Push the scalar onto the stack; you must ensure that the stack has enough space to
accommodate it.

PUSHn

Set the NV of the target to the given value, and push it onto the stack.PUSHi, etc.
are analogous.

There is also anXPUSHs, XPUSHn, etc. which extends the stack if necessary.

SETs

This sets the top element of the stack to the given SV.SETn, etc. are analogous.

dTOPss, dPOPss

These declare a variable calledsv , and either return the top entry from the stack
or pop an entry and setsv to it.

dTOPnv, dPOPnv

These are similar, but declare a variable calledvalue of the appropriate type.
dTOPiv and so on are analogous.

66

Chapter 6. Fundamental Operations

In some cases, the PP code is purely concerned with rearranging the stack, and the PP
function will call out to another function indoop.c to actually perform the relevant
operation.

6.3. The opcode table and opcodes.pl

The header files for the opcode tables are generated from a Perl program called
opcode.pl . Here is a sample entry for an op:

index index ck_index isT@ S S S?

The entry is in five columns.

The first column is the internal name of the operator. Whenopcode.pl is run, it will
create an enum including the symbolOP_INDEX.

The second column is the English description of the operator which will be printed
during error messages.

The third column is the name of the "check" function which will be used to optimize
this tree; seeSection 6.5.

Then come additional flags plus a character which specifies the "flavour" of the op: in
this case,index is a list op, since it can take more than two parameters, so it has the
symbol@.

Finally, the "prototype" for the function is given:S S S? translates to the Perl
prototype$$;$, which is indeed the prototype forCORE::index .

While most people will never need to edit the op table, it is as well to understand how
Perl "knows" what the ops look like. There is a full description of the format of the
table, including details of the meanings of the flags, inopcodes.pl .

67

Chapter 6. Fundamental Operations

6.4. Scatchpads and Targets
PP code is the guts of Perl execution, and hence is highly optimized for speed. One
thing that you don’t want to do in time-critical areas is create and destroy SVs, because
allocating and freeing memory is a slow process. So Perl allocates for each op atarget
SV which is created at compile time. We’ve seen above that PP code gets the target and
uses thePUSHmacros to push the target onto the stack.

Targets live on the scratchpad, just like lexical variables.op_targ for an op is an offset
in the current pad; it is the element number in the pad’s array which stores the SV that
should be used as the target. Perl arranges that ops can reuse the same target if they are
not going to collide on the stack; similarly, it also directly uses lexical variables on the
pad as targets if appropriate instead of going through apadsv operation to extract
them. (This is a standard compiler technique called "binding".)

You can tell if an SV is a target by its flags: targets (also known as temporaries) have the
TEMPflag set, and SVs bound to lexical variables on the pad have thePADMYflag set.

6.5. The Optimizer
Between compiling the op tree and executing it, Perl goes through three stages of
optimization.

The first stage actually happens as the tree is being constructed. Once Perl creates an
op, it passes it off to a check routine. We saw above how the check routines are assigned
to operators in the op table; anindex op will be passed tock_index . This routine
may manipulate the op in any way it pleases, including freeing it, replacing it with a
different op, or adding new ops above or below it. They are sometimes called in a chain:
for instance, the check routine forindex simply tests to see if the string being sought
is a constant, and if so, performs a Fast Boyer-Moore string compilation to speed up the
search at runtime; then it calls the general function-checking routineck_fun .

Secondly, the constant folding routinefold_constants is called if appropriate. This
tests to see whether all of the descendents of the op are constants, and if they are, runs
the operator as if it was a little program, collects the result and replaces the op with a

68

Chapter 6. Fundamental Operations

constant op reflecting that result. You can tell if constants have been folded by using the
"deparse" compiler backend (seeSection 7.2.3):

% perl -MO=Deparse -e ’print (3+5+8+$foo)’
print 16 + $foo;

Here, the3+5 has been constant-folded into8, and then8+8 is constant-folded to 16.

Finally, the peephole optimizerpeep is called. This examines each op in the tree in
execution order, and attempts to determine "local" optimizations by "thinking ahead"
one or two ops and seeing if multiple operations can be combined into one. It also
checks for lexical issues such as the effect ofuse strict on bareword constants.

6.6. Summary
Perl’s fundamental operations are represented by a series of structures, analogous to the
structures which make up Perl’s internal values. These ops are threaded together in two
ways - firstly, into an op tree during the parsing process, where each op dominates its
arguments, and secondly, by a thread of execution which establishes the order in which
Perl has to run the ops.

To run the ops, Perl uses the code inpp*.c , which is particularly macro-heavy. Most of
the macros are concerned with manipulating the argument stack, which is the means by
which Perl passes data between operations.

Once the op tree is constructed, there are a number of means by which it is optimized -
check routines and constant folding which takes place after each op is created, and a
peephole optimizer which performs a "dry run" over the execution order.

69

Chapter 6. Fundamental Operations

6.7. Exercises

1. The functionop_null turns an op into a null op. Find all the occasions in which a
null op is constructed, and explain in each case why the op has been nullified.

2. Explain what is going on in the bottom half ofPerl_utilize . (after the
commentFake up an import/unimport)

3. Add a check for the range operator - if both sides are constant, ensure that the left
is less than the right.

70

Chapter 7. The Perl Compiler

7.1. What is the Perl Compiler?
In 1996, someone

* (I think it was Chip. Must check.)

announced a challenge - the first person to write a compiler suite for Perl would win a
laptop. Malcolm Beattie stepped up to the challenge, and won the laptop with hisB

suite of modules. Many of these modules have now been brought into the Perl core as
standard modules.

The Perl compiler is not just for compiling Perl code to a standalone executable - in
fact, some would argue that it’s notat all for compiling Perl into a standalone
executable. We’ve already seen the use of theB::Terse andB::Tree modules to help
us visualise the Perl op tree, and this should give us a hint as to what the Perl compiler
is actually all about.

The compiler comes in three parts: a frontend module,O, which does little other than
turn on Perl’s-c (compile only, do not run) flag, and loads up a backend module, such
asB::Terse which performs a specific compiler task, and theB module which acts as
a low-level driver.

TheB, at the heart of the compiler, is a stunningly simple XS module which makes
Perl’s internal object-like structures - SVs, ops, and so on - into real Perl-space objects.
This provides us with a degree of introspection: we can, for instance, write a backend
module which traverses the op tree of a compiled program and dump out its state to a
file. (This is exactly what theB::Bytecode module does.)

It’s important to know what the Perl compiler is not. It’s not something which will
magically make your code go faster, or take up less space, or be more reliable. The
backends which generate standalone code generally do exactly the opposite. All the
compiler is, essentially, is a way of getting access to the op tree and doing something

71

Chapter 7. The Perl Compiler

potentially interesting with it. Let’s now take a look at some of the interesting things
that can be done with it.

7.2. B:: Modules
There are twelve backend modules to the compiler in the Perl core, and many more
besides on CPAN. Here we’ll briefly examine those which are particularly helpful to
internals hackers or particularly interesting.

7.2.1. B::Concise

B::Concise was written quite recently by Stephen McCamant to provide a generic
way of getting concise information about the op tree. It is highly customizable, and can
be used to emulateB::Terse andB::Debug . (see below)

Here’s the basic output fromB::Concise :

% perl -MO=Concise -e ’print $a+$b’
1r <@> leave[t1] vKP/REFC ->(end)
1k <0> enter ->1l
1l <;> nextstate(main 7 -e:1) v ->1m
1q <@> print vK ->1r
1m <0> pushmark s ->1n
1p <2> add[t1] sK/2 ->1q
- <1> ex-rv2sv sK/1 ->1o
1n <$> gvsv(*a) s ->1o
- <1> ex-rv2sv sK/1 ->1p
1o <$> gvsv(*b) s ->1p

Each line consists of five main parts:

• a label for this operator (in this case,1r)

72

Chapter 7. The Perl Compiler

• a type signifier (@is a list operator - think arrays)

• the name of the op and its target, if any, plus any other information about it

• the flags for this operator. Here,v signifies void context andK shows that this
operator has children. The private flags are shown after the slash, and are written out
as a longer abbreviation than just one character:REFCshows that this op is
refcounted.

• finally, the label for the next operator in the tree, if there is one.

Note also that, for instance, ops which have been optimized away to a null are left as
"ex-...". The exact meanings of the flags and the op classes are given in the
B::Concise documentation:

=head2 OP flags abbreviations

v OPf_WANT_VOID Want nothing (void context)
s OPf_WANT_SCALAR Want single value (scalar context)
l OPf_WANT_LIST Want list of any length (list context)
K OPf_KIDS There is a firstborn child.
P OPf_PARENS This operator was parenthesized.

(Or block needs explicit scope entry.)
R OPf_REF Certified reference.

(Return container, not containee).
M OPf_MOD Will modify (lvalue).
S OPf_STACKED Some arg is arriving on the stack.
* OPf_SPECIAL Do something weird for this op (see op.h)

=head2 OP class abbreviations

0 OP (aka BASEOP) An OP with no children
1 UNOP An OP with one child
2 BINOP An OP with two children
| LOGOP A control branch OP
@ LISTOP An OP that could have lots of children
/ PMOP An OP with a regular expression

73

Chapter 7. The Perl Compiler

$ SVOP An OP with an SV
" PVOP An OP with a string
{ LOOP An OP that holds pointers for a loop
; COP An OP that marks the start of a state-

ment

As with many of the debuggingB:: modules, you can use the-exec flag to walk the
op tree in execution order, following the chain ofop_next ’s from the start of the tree:

% perl -MO=Concise,-exec -e ’print $a+$b’
1k <0> enter
1l <;> nextstate(main 7 -e:1) v
1m <0> pushmark s
1n <$> gvsv(*a) s
1o <$> gvsv(*b) s
1p <2> add[t1] sK/2
1q <@> print vK
1r <@> leave[t1] vKP/REFC
-e syntax OK

Amongst other options, (again, see the documentation)B::Concise supports a-tree

option for tree-like ASCII art graphs, and the curious but fun-linenoise option.

7.2.2. B::Debug

B::Debug dumps outall of the information in the op tree; for anything bigger than a
trivial program, this is just way too much information. Hence, to sensibly make use of
it, it’s a good idea to go through withB::Terse or B::Concise first, and find which
ops you’re interested in, and then grep for them.

Some output fromB::Debug looks like this:

LISTOP (0x81121a8)

74

Chapter 7. The Perl Compiler

op_next 0x0
op_sibling 0x0
op_ppaddr PL_ppaddr[OP_LEAVE]
op_targ 1
op_type 178
op_seq 6433
op_flags 13
op_private 64
op_first 0x81121d0
op_last 0x8190498
op_children 3

OP (0x81121d0)
op_next 0x81904c0
op_sibling 0x81904c0
op_ppaddr PL_ppaddr[OP_ENTER]
op_targ 0
op_type 177
op_seq 6426
op_flags 0
op_private 0

As you should know from the ops chapter, this is all the information contained in the op
structure: the type of op and its address, the ops related to it, the C function pointer
implementing the PP function, the target on the scratchpad this op uses, its type,
sequence number, and public and private flags. It also does similar dumps for SVs. You
may find theB::Flags module useful for "Englishifying" the flags.

7.2.3. B::Deparse

B::Deparse takes a Perl program and turns it into a Perl program. This doesn’t sound
very impressive, but it actually does so by decompiling the op tree back into Perl.
While this has interesting uses for things like serializing subroutines, it’s interesting for

75

Chapter 7. The Perl Compiler

internals hackers because it shows us how Perl understands certain constructs. For
instance, we can see that logical operators and binary "if" are equivalent:

% perl -MO=Deparse -e ’$a and do {$b}’
if ($a) {

do {

$b;

};

}

-e syntax OK

We can also see, for instance, how the magic that is added by command line switches
goes into the op tree:

% perl -MO=Deparse -ane ’print’
LINE: while (defined($_ = <ARGV>)) {

@F = split(" ", $_, 0);

print $_;

}

-e syntax OK

7.3. What B and OProvide
To see how we can built compilers and introspective modules withB, we need to see
whatB and the compiler front-endOgive us. We’ll start withO, since it’s simpler.

7.3.1. O

The guts of theOmodule are very small - only 48 lines of code - because all it intends
to do is set up the environment ready for a back-end module. The back-ends are
expected to provide a subroutine calledcompile which processes the options that are

76

Chapter 7. The Perl Compiler

passed to it and then returns a subroutine reference which does the actual compilation.
O then calls this subroutine reference in a CHECK block.

CHECK blocks were specifically designed for the compiler - they’re called after Perl
has finished constructing the op tree and before it starts running the code.Ocalls theB

subroutineminus_c which, as its name implies, is equivalent to the command-line-c

flag to perl: compile but do not execute the code. It then ensures that any BEGIN
blocks are accessible to the back-end modules, and then callscompile from the
back-end processor with any options from the command line.

7.3.2. B

As we have mentioned, the B module allows Perl-level access to ops and internal
variables. There are two key ways to get this access: from the op tree, or from a
user-specified Perl "thing".

To get at the op tree,B provides themain_root andmain_start functions. These
returnB::OP -derived objects representing the root of the op tree and the start of the
tree in execution order respectively:

% perl -MB -le ’print B::main_root; print B::main_start’
B::LISTOP=SCALAR(0x8104180)

B::OP=SCALAR(0x8104180)

For everything else, you can use thesvref_2object function which turns some kind
of reference into the appropriateB::SV -derived object:

% perl -MB -l
$a = 5; print B::svref_2object(\$a);
@a=(1,2,3); print B::svref_2object(\@a);

B::IV=SCALAR(0x811f9b8)

B::AV=SCALAR(0x811f9b8)

77

Chapter 7. The Perl Compiler

(Yes, it’s normal that the objects will have the same addresses.)

In this tutorial we’ll concentrate on the op-derived classes, because they’re the most
useful feature ofB for compiler construction; the SV classes are a lot simpler and quite
analogous.

7.4. Using B for Simple Things

OK, so now we have the objects - what can we do with them?B provides accessor
methods similar to the fields of the structures inop.h andsv.h . For instance, we can
find out the type of the root op like this:

$op=B::main_root; print $op->type;
178

Oops:op_type is actually an enum, so we can’t really get much from looking at that
directly; however,B also gives us thename method, which is a little friendlier:

$op=B::main_root; print $op->name;
leave

We can also useflags , private , targ , and so on - in fact, everything we saw
prefixed byop_ in theB::Debug example above.

What about traversing the op tree, then? You should be happy to learn thatfirst ,
sibling , next and friends return theB::OP object for the related op. That’s to say,
you can follow the op tree in execution order by doing something like this:

#!/usr/bin/perl -cl
use B;
CHECK {

$op=B::main_start;
print $op->name while $op=$op->next;

}

78

Chapter 7. The Perl Compiler

print $a+$b;
...

Except that’s not quite there; when you get to the last op in the sequence, the "enter" at
the root of the tree,op_next will be a null pointer.B represents a null pointer by the
B::NULL object, which has no methods. This has the handy property that if$op is a
B::NULL , then$$op will be zero. So we can print the name of each op in execution
order by saying:

$op=B::main_start;
print $op->name while $op=$op->next and $$op;

Walking the tree in normal order is a bit more tricky, since we have to make the right
moves appropriate for each type of op: we need to look at bothfirst andlast links
from binary ops, for instance, but only thefirst from a unary op. Thankfully,B
provides a function which does this all for us:walkoptree_slow . This arranges to
call a user-specified method on each op in turn. Of course, to make it useful, we have to
define the method...

#!/usr/bin/perl -cl
use B;
CHECK {

B::walkoptree_slow(B::main_root, "print_it", 0);
sub B::OP::print_it { my $self = shift; print $self->name }

}

print $a+$b;
...

Since all ops inherit fromB::OP , this duly produces:

leave

79

Chapter 7. The Perl Compiler

enter

nextstate

print

pushmark

add

null

gvsv

null

gvsv

We can also use the knowledge thatwalkoptree_slow passes the recursion level as a
parameter to the callback method, and prettify the tree a little, like this:

sub B::OP::print_it {
my ($self,$level)=@_;
print " "x$level, $self->name

}

leave

enter

nextstate

print

pushmark

add

null

gvsv

null

gvsv

See how we’re starting to approximateB::Terse ? Actually,B::Terse uses the
B::peekop function, a little like this:

sub B::OP::print_it {

80

Chapter 7. The Perl Compiler

my ($self,$level)=@_;
print " "x$level, B::peekop($self);

}

LISTOP (0x81142c8) leave

OP (0x81142f0) enter

COP (0x8114288) nextstate

LISTOP (0x8114240) print

OP (0x8114268) pushmark

BINOP (0x811d920) add

UNOP (0x8115840) null

SVOP (0x8143158) gvsv

UNOP (0x811d900) null

SVOP (0x8115860) gvsv

All that’s missing is thatB::Terse provides slightly more information based on each
different type of op, and that can be easily done by putting methods in the individual op
classes:B::LISTOP , B::UNOP and so on.

Let’s finish off our little compiler - let’s call itB::Simple - by turning it into a module
that can be used from theO front-end. This is easy enough to do in our case, once we
remember thatcompile has to return a callback subroutine reference:

package B::Simple;
use B qw(main_root peekop walkoptree_slow);

sub B::OP::print_it {
my ($self,$level)=@_;
print " "x$level, peekop($self);

}

sub compile {
return sub { walkoptree_slow(main_root, "print_it", 0); }

}

81

Chapter 7. The Perl Compiler

1;

If we save the above code asB/Simple.pm , we can run it on our own programs with
perl -MO=Simple We have a backend compiler module!

7.5. Summary
In this chapter, we’ve examined the basics of the Perl compiler: its front-endO, the
nuts-and-bolts moduleB, and how to write both backend modules using these. Writing
compiler modules is really an excellent way to learn about how the Perl op tree fits
together and what the operations signify, so you are encouraged to complete at least
some of the following exercises.

7.6. Exercises

1. Examine the code toB::Bblock . As the documentation says, " A basic block is a
series of operations which is known to execute from start to finish, with no
possiblity of branching or halting."

If there are any ops following areturn operation inside a basic block, they will
never be executed and can be considered dead code. Write a module which detects
and reports this type of dead code.

2. Add line numbers to your dead code reporting module by examining the nearest
CV.

3. Extend the module to report unreachable code after unconditionalnext andlast

statements.

82

Chapter 7. The Perl Compiler

1. Write a module which tracks variable access and reports dead code based
on it. For instance, Perl can optimize

#!/usr/bin/perl
if (0) {

...
}

away to nothing, but cannot currently remove

#!/usr/bin/perl
$foo=0;
if ($foo) {

...
}

2. Write a module which describes other optimizations that can be made. For
instance, given

$a = $x * $y;
$b = $x * $y;

optimize to

$b = $a = $x * $y;

83

Appendix A. Unix cheat sheet
A brief run-down for those whose Unix skills are rusty:

Table A-1. Simple Unix commands

Action Command
Change to home directory cd

Change todirectory cd directory

Change to directory above current directorycd ..

Show current directory pwd

Directory listing ls

Wide directory listing, showing hidden filesls -al

Showing file permissions ls -al

Making a file executable chmod +x filename

Printing a long file a screenful at a time more filename or lessfilename

Getting help forcommand man command

84

Appendix B. Editor cheat sheet
This summary is laid out as follows:

Table B-1. Layout of editor cheat sheets

Running Recommended command line for starting
it.

Using Really basic howto. This is not even an
attempt at a detailed howto.

Exiting How to quit.

Gotchas Oddities to watch for.

B.1. vi

B.1.1. Running

% vi filename

B.1.2. Using

• i to enter insert mode, then type text, pressESC to leave insert mode.

• x to delete character below cursor.

• dd to delete the current line

• Cursor keys should move the cursor whilenot in insert mode.

• If not, try hjkl , h = left, l = right, j = down,k = up.

85

Appendix B. Editor cheat sheet

• / , then a string, thenENTER to search for text.

• :w thenENTER to save.

B.1.3. Exiting

• PressESC if necessary to leave insert mode.

• :q thenENTER to exit.

• :q! ENTER to exit without saving.

• :wq to exit with save.

B.1.4. Gotchas
vi has an insert mode and a command mode. Text entry only works in insert mode, and
cursor motion only works in command mode. If you get confused about what mode you
are in, pressingESC twice is guaranteed to get you back to command mode (from
where you press i to insert text, etc).

B.1.5. Help
:help ENTER might work. If not, then see the manpage.

86

Appendix B. Editor cheat sheet

B.2. pico

B.2.1. Running

% pico -w filename

B.2.2. Using

• Cursor keys should work to move the cursor.

• Type to insert text under the cursor.

• The menu bar haŝX commands listed. This means hold downCTRL and press the
letter involved, egCTRL -W to search for text.

• CTRL -Oto save.

B.2.3. Exiting
Follow the menu bar, if you are in the midst of a command. UseCTRL -X from the
main menu.

B.2.4. Gotchas
Line wraps are automatically inserted unless the -w flag is given on the command line.
This often causes problems when strings are wrapped in the middle of code and similar.
\\ \hline

87

Appendix B. Editor cheat sheet

B.2.5. Help
CTRL -G from the main menu, or just read the menu bar.

B.3. joe

B.3.1. Running

% joe filename

B.3.2. Using

• Cursor keys to move the cursor.

• Type to insert text under the cursor.

• CTRL -K thenS to save.

B.3.3. Exiting

• CTRL -C to exit without save.

• CTRL -K thenX to save and exit.

B.3.4. Gotchas
Nothing in particular.

88

Appendix B. Editor cheat sheet

B.3.5. Help
CTRL -K thenH.

B.4. jed

B.4.1. Running

% jed

B.4.2. Using

• Defaults to the emacs emulation mode.

• Cursor keys to move the cursor.

• Type to insert text under the cursor.

• CTRL -X thenS to save.

B.4.3. Exiting
CTRL -X thenCTRL -C to exit.

B.4.4. Gotchas
Nothing in particular.

89

Appendix B. Editor cheat sheet

B.4.5. Help

• Read the menu bar at the top.

• PressESC then? thenH from the main menu.

90

Appendix C. ASCII Pronunciation Guide

Table C-1. ASCII Pronunciation Guide

Character Pronunciation
! bang, exlamation

* star, asterisk

$ dollar

@ at

% percent

& ampersand

" double-quote

’ single-quote, tick

() open/close bracket, parentheses

< less than

> greater than

- dash, hyphen

. dot

, comma

/ slash, forward-slash

\ backslash, slosh

: colon

; semi-colon

= equals

? question-mark

^ caret (pron. carrot)

_ underscore

[] open/close square bracket

{ } open/close curly brackets, open/close brace

91

Appendix C. ASCII Pronunciation Guide

Character Pronunciation
| pipe, or vertical bar

~ tilde (pron. “til-duh”, wiggle, squiggle)

‘ backtick

92

